Advertisement

Journal of Applied Phycology

, Volume 22, Issue 5, pp 629–638 | Cite as

Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae)

  • Freddy Guihéneuf
  • Manuela Fouqueray
  • Virginie MimouniEmail author
  • Lionel Ulmann
  • Boris Jacquette
  • Gérard Tremblin
Article

Abstract

Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic and docosahexaenoic acids (EPA and DHA), are abundantly synthesized by some phytoplankton species and play a key role in the marine food chain. However, they are generally considered to be sensitive to oxidation by UV radiation (UV-R). In order to investigate the effect of UV-R on the lipid composition of two marine microalgae, Pavlova lutheri and Odontella aurita, they were exposed to a combination of UVA-R and UVB-R with a total UV-R daily dose of 110 kJ m−2. Chlorophyll a, photochemical efficiency, and lipid composition were then determined on days 3, 5, and 8 of UV-R exposure. In P. lutheri, exposure to UV-R treatment led to a decrease in the proportions of PUFAs, such as EPA and DHA, especially into structural lipids (glycolipids and phospholipids). Our findings reveal a reduction of 20% in EPA levels and 16% in DHA levels, after 8 days of UV-R treatment. In O. aurita, exposure to UV-R did not change the fatty acid composition of the total lipids and lipid fractions of the cells. EPA levels remained high (27–28% of total lipids) during the 8 days of treatment. Consequently, the n-3 fatty acid content of P. lutheri was altered which highlights the sensitivity of this species to UV-R, whereas the results obtained for O. aurita suggest a more UV-R resistance. As a result, in latitude countries with medium UV-R level, outdoor “race-way” culture of O. aurita could yield a high-EPA algal biomass, whatever the seasonal variations in UV-R.

Keywords

Pavlova lutheri Odontella aurita UV radiation Lipid classes n-3 fatty acids 

Notes

Acknowledgements

This work was jointly funded by the “Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche (MENESR),” the “Conseil Général de la Mayenne,” “Laval Agglomération,” and the “CCI de la Mayenne.” The authors are especially grateful to Pierre Gaudin (University of Nantes, France) for supplying microalgae and would like to thank Monika Ghosh for reviewing the English text.

References

  1. Alonso DL, Belarbi EH, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54(5):461–471CrossRefPubMedGoogle Scholar
  2. Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43(1):26–40CrossRefGoogle Scholar
  3. Beardall J, Berman T, Markager S, Martinez R, Montecino V (1997) The effects of ultraviolet radiation on respiration and photosynthesis in two species of microalgae. Can J Fish Aquat Sci 54(3):687–696CrossRefGoogle Scholar
  4. Beardall J, Sobrino C, Stojkovic S (2009) Interactions between the impacts of ultraviolet radiation, elevated CO2 and nutrient limitation on marine primary producers. Photochem Photobiol Sci 8(9):1257–1265CrossRefPubMedGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  6. Buma AGJ, Wright SW, Van den Enden R, Van de Poll WH, Davidson AT (2006) PAR acclimation and UVBR-induced DNA damage in Antarctic marine microalgae. Mar Ecol Prog Ser 315:33–42CrossRefGoogle Scholar
  7. Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22(5):299–304CrossRefPubMedGoogle Scholar
  8. Cullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258(5082):646–650CrossRefPubMedGoogle Scholar
  9. De Brouwer JFC, Wolfstein K, Stal LJ (2002) Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom. Eur J Phycol 37(1):37–44CrossRefGoogle Scholar
  10. De Castro Araújo S, Tavano Garcia VM (2005) Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246(1-4):405–412CrossRefGoogle Scholar
  11. Döhler G, Biermann I (1994) Impact of UV-B radiation on the lipid and fatty acid composition of synchronized Ditylum brightwelli (West) Grunow. Z Naturforsch C 49(9–10):607–614Google Scholar
  12. Döhler G, Lohmann M (1995) Impact of UV radiation of different wavebands on the pigmentation of the haptophycean Pavlova. J Photochem Photobiol B 27(3):265–270CrossRefGoogle Scholar
  13. Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166(1–2):105–116CrossRefGoogle Scholar
  14. Fouqueray M, Mouget JL, Morant-Manceau A, Tremblin G (2007) Dynamics of short-term acclimation to UV radiation in marine diatoms. J Photochem Photobiol B 89(1):1–8CrossRefPubMedGoogle Scholar
  15. Goes JI, Handa N, Taguchi S, Hama T (1994) Effect of UV-B on the fatty acid composition of the marine phytoplankter Tetraselmis sp.: relationship to cellular pigments. Mar Ecol Prog Ser 114:259–274CrossRefGoogle Scholar
  16. Harrison, P.J., Waters, R.E., Taylor, F.J.R (1980) A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16(1):28–35Google Scholar
  17. Harwood JL (1988) Fatty acid metabolism. Ann Rev Plant Physiol Plant Mol Biol 39:101–138CrossRefGoogle Scholar
  18. Henderson RJ, Tocher DT (1992) Thin-layer chromatography. In: Hamilton RJ, Hamilton S (eds) Lipids analysis—a practical approach. Oxford University Press, Oxford, pp 65–111Google Scholar
  19. Hessen DO, De Lange HJ, Van Donk E (1997) UV-induced changes in phytoplankton cells and its effects on grazers. Freshw Biol 38(3):513–524CrossRefGoogle Scholar
  20. Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37(3):190–207CrossRefPubMedGoogle Scholar
  21. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635CrossRefPubMedGoogle Scholar
  22. Karentz D, Bosch I (2001) Influence of ozone-related increases in ultraviolet radiation on Antarctic marine organisms. Am Zool 41(1):3–16CrossRefGoogle Scholar
  23. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67(7):696–701CrossRefPubMedGoogle Scholar
  24. Leu E, Pærøvig PJ, Hessen DO (2006a) UV effects on stoichiometry and PUFAs of Selenastrum capricornutum and their consequences for the grazer Daphnia magna. Freshw Biol 51(12):2296–2308CrossRefGoogle Scholar
  25. Leu E, Wängberg SA, Wulff A, Falk-Petersen S, Børre Ørbæk J, Hessen DO (2006b) Effects of changes in ambient PAR and UV radiation on the nutritional quality of an Arctic diatom (Thalassiosira antarctica var. borealis). J Exp Mar Biol Ecol 337(1):65–81CrossRefGoogle Scholar
  26. Liang Y, Beardall J, Heraud P (2006a) Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J Photochem Photobiol B 82(3):161–172CrossRefPubMedGoogle Scholar
  27. Liang Y, Beardall J, Heraud P (2006b) Effect of UV radiation on growth, chlorophyll fluoresence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Phycologia 45(6):605–615CrossRefGoogle Scholar
  28. Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate. Gymnodinium sp. in batch culture. Phytochemistry 63(2):145–153CrossRefPubMedGoogle Scholar
  29. Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J Lipid Res 7:574–576PubMedGoogle Scholar
  30. Parrish CC, Wangersky PJ (1997) Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol Prog Ser 35:119–128CrossRefGoogle Scholar
  31. Perkins RG, Mouget JL, Lefebvre S, Lavaud J (2006) Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Mar Biol 149:703–712CrossRefGoogle Scholar
  32. Rech M, Mouget JL, Tremblin G (2003) Modification of the Hansatech FMS fluorometer to facilitate measurements with microalgal cultures. Aquat Bot 77(1):71–80CrossRefGoogle Scholar
  33. Rech M, Mouget JL, Morant-Manceau A, Rosa P, Tremblin G (2005) Long-term acclimation to UV radiation: effects on growth, photosynthesis and carbonic anhydrase activity in marine diatoms. Bot Mar 48(5):407–420CrossRefGoogle Scholar
  34. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30(6):972–979CrossRefGoogle Scholar
  35. Renger G, Völker M, Eckert HJ, Fromme R, Hohm-Veit S, Gräber P (1989) On the mechanism of photosystem II deterioration by UV-B irradiation. J Photochem Photobiol B 49(1):97–105CrossRefGoogle Scholar
  36. Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23(1):67–73CrossRefGoogle Scholar
  37. Sinha RP, Häder DP (2002) Life under solar UV radiation in aquatic organisms. Adv Space Res 30:1547–1556CrossRefPubMedGoogle Scholar
  38. Skerratt JH, Davidson AD, Nichols PD, McMeekin TA (1998) Effect of UV-B on lipid content of three Antarctic marine phytoplankton. Phytochemistry 49(4):999–1007CrossRefGoogle Scholar
  39. Slover HT, Lanza E (1979) Quantitative analysis of food fatty acids by capillary gas chromatography. J Amer Oil Chem Soc 56(12):933–943CrossRefGoogle Scholar
  40. Speziale BJ, Schreiner SP, Giammateo PA, Schindler JE (1984) Comparison of N, N dimethylformamide, dimethyl sulfoxide and acetone for extraction of phytoplankton chlorophyll. Can J Fish Aquat Sci 41(10):1519–1522CrossRefGoogle Scholar
  41. Stolarski R, Bojkov R, Bishop L, Zerefos C, Staehelin J, Zawodny J (1992) Measured trends in stratospheric ozone. Science 256(5055):342–349CrossRefPubMedGoogle Scholar
  42. Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the Eustigmatophyceae Nannochloropsis sp. J Phycol 25(4):686–692CrossRefGoogle Scholar
  43. Sundbäck K, Odmark S, Wulff A, Nilsson C, Wängberg SA (1997) Effects of enhanced UVB radiation on a marine benthic diatom mat. Mar Biol 128(1):171–179CrossRefGoogle Scholar
  44. Thompson PA, Harrison PJ, Whyte JNC (1990) Influence of irradiance on the fatty acid composition of phytoplankton. J Phycol 26(2):278–288CrossRefGoogle Scholar
  45. Vothknecht UC, Westhoff P (2001) Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta – Mol Cell Biol Res 1541(1–2):91–101CrossRefGoogle Scholar
  46. Wang KS, Chai TJ (1994) Reduction in omega-3 fatty acids by UV-B irradiation in microalgae. J Appl Phycol 6(4):415–421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Freddy Guihéneuf
    • 1
    • 2
  • Manuela Fouqueray
    • 1
    • 3
  • Virginie Mimouni
    • 1
    • 2
    Email author
  • Lionel Ulmann
    • 1
    • 2
  • Boris Jacquette
    • 1
    • 3
  • Gérard Tremblin
    • 1
    • 3
  1. 1.EA 2160 Mer, Molécules, Santé, Ecophysiologie et Métabolisme des MicroalguesUniversité du Maine, PRES UNAMLe Mans Cedex 9France
  2. 2.Département Génie BiologiqueIUT de LavalLaval Cedex 9France
  3. 3.Faculté des Sciences et TechniquesLe Mans Cedex 9France

Personalised recommendations