Journal of Applied Phycology

, Volume 22, Issue 3, pp 265–276 | Cite as

Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition

  • Manuela Görs
  • Rhena Schumann
  • Dominik Hepperle
  • Ulf Karsten
Article

Abstract

Chlorella vulgaris is one of the best-studied phototrophic eukaryotes. From the 1950s on, C. vulgaris and some other algal species were cultivated in huge quantities to meet the growing demand for alternative protein sources. After drying, algal biomass can be merchandised as tablets, capsules, extract or powder with specific biochemical qualities. However, the products quality, e.g. the containing species, microbial contamination or content and quality of pigments varies enormously. In this study, commercial Chlorella products, unprocessed Chlorella powders and several production strains were investigated. Molecular analysis of the 18S rDNA confirmed either the existence of more than one species per product or only other green algae species in about half of the samples tested. Many of the examined samples contained critical amounts of bacterial contaminations. Furthermore, cyanobacteria were detected in some of the samples. The content of chlorophyll a varied greatly between the samples and pheophytin, a degradation product of chlorophyll, was detected in some samples in large concentrations. These data indicate that quality control of microalgal products is an important issue that should be addressed by the manufactures.

Keywords

Chlorella vulgaris Chlorella products Microalgal biotechnology Nutraceuticals Dietary supplement Chlorophyta 

References

  1. Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380CrossRefPubMedGoogle Scholar
  2. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16 S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar
  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  4. Atkinson AW, Gunning ES, John CL (1972) Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107:1–32CrossRefGoogle Scholar
  5. Bagchi D (2006) Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology 221:1–3CrossRefPubMedGoogle Scholar
  6. Becker EW (1994) Microalgae-biotechnology and microbiology. Cambridge University Press, Cambridge, p 304Google Scholar
  7. Becker EW (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Cambridge, pp 312–351Google Scholar
  8. Brown SB, Houghton JD, Hendry GAF (1991) Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls. CRC, London, pp 465–489Google Scholar
  9. Chernomorsky S, Segelman A, Poretz RD (1999) Effect of dietary chlorophyll derivates on mutagenesis and tumor cell growth. Teratog Carcinog Mutagen 19:313–322CrossRefPubMedGoogle Scholar
  10. Czygan FC (1968) Sekundär-Carotinoide in Grünalgen. Arch Microbiol 61:81–102Google Scholar
  11. Czygan FC (1982) Primäre und sekundäre Carotinoide in chlorokokkalen Grünalgen. Algol Stud 29:470–488Google Scholar
  12. Diez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951CrossRefPubMedGoogle Scholar
  13. Fujiwara Y, Hirakawa K, Sinpo K (1990) Effect of long-term administration of Chlorella tablets on hyperlipemia. J Japanese Soc Nutrition Food Sci 43:167–173Google Scholar
  14. Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215CrossRefGoogle Scholar
  15. Gulati OP, Berry OP (2006) Legislation relating to nutraceuticals in the European Union with a particular focus on botanical-sourced products. Toxicology 221:75–87CrossRefPubMedGoogle Scholar
  16. Hamby RK, Sim LE, Issel LE, Zimmer EA (1988) Direct RNA sequencing optimization of extraction and sequencing techniques for work with higher plants. Plant Mol Biol Reporter 6:179–197Google Scholar
  17. Huss VA, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BA, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). Phycologia 35:587–598CrossRefGoogle Scholar
  18. Jassby A (1988) Some public health aspects of the microalgal products. In: Lembi CA, Waaland JR (eds) Algae and human affairs 181–202. Cambridge University Press, CambridgeGoogle Scholar
  19. Jeffrey SW, Welschmeyer NA (1997) Spectrophotometric and fluorometric equations in common use in oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography—guidelines to modern methods. UNESCO, Paris, pp 597–615Google Scholar
  20. Jensen GS, Ginsberg DI, Drapeau MS (2001) Blue-green algae as immuno-enhancer and biomodulator. J Am Nutraceutical Assoc 3:24–30Google Scholar
  21. Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyanotoxin production. Microbiol Ecol 35:1–9CrossRefGoogle Scholar
  22. Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst Evol 125(3):129–138CrossRefGoogle Scholar
  23. Kessler E, Huss VA (1992) Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the Culture Collection of the University Texas at Austin. J Phycol 28(4):550–553CrossRefGoogle Scholar
  24. Komárek J, Fott B (1983) Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süßwassers. 7. Teil, 1. Hälfte, 1-1044, E.Schweizerbart’sche Verlagsbuchahndlung (Nägele u. Obermiller). Stuttgart, GermanyGoogle Scholar
  25. Krienitz L, Hegewald EH, Hepperle D, Huss VA, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43(5):529–542Google Scholar
  26. Liang S, Liu X, Chen F, Chen Z (2004) Current microalgal health food R&D activities in China. Hydrobiologia 512:45–48CrossRefGoogle Scholar
  27. Lorenzen J (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  28. Maxwell DP, Falk S, Trick CG, Huner NPA (1994) Growth at low-temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 150(2):535–543Google Scholar
  29. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  30. Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and its rDNA sequences. J Phycol 41:1236–1247CrossRefGoogle Scholar
  31. Noda K, Ohno N, Tanaka K, Kamiya N, Okuda M, Yadomae T, Nomoto K, Shoyama Y (1996) A water-soluble antitumor glycoprotein from Chlorella vulgaris. Planta Med 62:423–426CrossRefPubMedGoogle Scholar
  32. Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35(4):308–326CrossRefGoogle Scholar
  33. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR Primers to amplify 16 S rRNA genes from Cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  34. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering 20:459–466CrossRefPubMedGoogle Scholar
  35. Ouellette AJA, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1:359–366CrossRefGoogle Scholar
  36. Ördög V, Stirk WA, Lenobel R, Bancírová M, Strnad M, van Staden J, Szigeti J, Németh L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314CrossRefGoogle Scholar
  37. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrosc. Biochim Biophys Acta 975:384–394CrossRefGoogle Scholar
  38. Porter KG (1973) Selective grazing and differential digestion of algae by zooplankton. Nature 244:179–180CrossRefGoogle Scholar
  39. Pratt R (1944) Chlorellin, an antibacterial substance from Chlorella. Science 99(2574):351–352CrossRefPubMedGoogle Scholar
  40. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293CrossRefPubMedGoogle Scholar
  41. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefPubMedGoogle Scholar
  42. Pulz O, Scheibenbogen K, Groß W (2001) Biotechnology with Cyanobacteria and Microalgae. In: Rehm H-J, Reed G (eds) Biotechnology volume 10 special processes, 2nd edn. WILEY, Germany, pp 105–136Google Scholar
  43. Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from Microalgae 353–358. Taylor & Francis, LondonGoogle Scholar
  44. Sano T, Tanaka Y (1987) Effect of dried, powdered Chlorella vulgaris on experimental atherosclerosis and alimentary hypercholesterolemia in cholesterol-fed rabbits. Artery 115:217–224Google Scholar
  45. Schumann R, Häubner N, Klausch S, Karsten U (2005) Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades. Int Biodeterior Biodegradation 55:213–222CrossRefGoogle Scholar
  46. Sogin ML, Gunderson JH (1987) Structural diversity of eukaryotic small subunit ribosomal RNAs. Ann N Y Acad Sci 503:125–139CrossRefPubMedGoogle Scholar
  47. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefPubMedGoogle Scholar
  48. Suárez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley TB (2005) Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr Res 340:1489–1498CrossRefPubMedGoogle Scholar
  49. Suárez ER, Syvitski R, Kralovec JA, Noseda MD, Barrow CJ, Ewart HS, Lumsden MD, Grindley TB (2006) Immunostimulatory polysaccharides from Chlorella pyrenoidosa. A new galactofuranan. Measurement of molecular weight and molecular weight dispersion by DOSY NMR. Biomacromolecules 7:2368–2376CrossRefPubMedGoogle Scholar
  50. Takeda H (1991) Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). J Phycol 27:224–232CrossRefGoogle Scholar
  51. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Cambridge, pp 178–214Google Scholar
  52. White, T.J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes For Phylogenetics. PCR Protocols: A Guide to Methods and Applications 315-322Google Scholar
  53. Wilson KE, Huner NPA (2000) The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid Delta pH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta 212:93–102CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Manuela Görs
    • 1
  • Rhena Schumann
    • 1
  • Dominik Hepperle
    • 2
  • Ulf Karsten
    • 1
  1. 1.Institute of Biological Sciences, Applied EcologyUniversity of RostockRostockGermany
  2. 2.SequentiX, Digital DNA ProcessingKlein RadenGermany

Personalised recommendations