Advertisement

Journal of Applied Phycology

, Volume 22, Issue 2, pp 139–146 | Cite as

A method for extracting a high-quality RNA from Symbiodinium sp.

  • Nedeljka N. Rosic
  • Ove Hoegh-Guldberg
Article

Abstract

Good quality RNA is essential for a range of analyses including microarray and gene expression studies. A number of methods for RNA extraction from symbiotic dinoflagellates were assessed for their ability to recover a high-quality RNA applicable for evaluation of gene expression profiles. The recovery and quality of the obtained RNA were evaluated with respect to UV light absorbance profiles and automated microcapillary electrophoretic RNA separation. A modified RNA extraction procedure that combines two existing commercial kits, Trizol and Qiagen RNeasy kits, was efficiently employed for the recovery of a high-quality RNA under specific homogenization conditions. Cell homogenization using glass beads at the speed of 4,500 rpm for up to 6 min resulted in a good RNA recovery and preserved RNA integrity. A high-quality RNA obtained following the described procedure was successfully applied in reverse transcriptase-polymerase chain reaction (PCR) and in quantitative PCR studies. Gene expression profiles were changed with RNA extraction procedure, with the highest transcript numbers at precise conditions of cell homogenization. RNA samples with RNA integrity number values from 6 and above were recommended for downstream applications. This sequence of RNA isolation and RNA evaluation represents a methodological improvement required for functional genomic studies in dinoflagellates.

Keywords

Dinoflagellate Symbiodinium RNA Real-time PCR Gene expression Bioanalyzer 

Notes

Acknowledgments

The authors would like to thank Dr. Rebecca Hawthorne for her assistance in using the Agilent 2100 Bioanalyzer and Drs. Iris Depaz and Shona Osborne for their help in the revision of the manuscript. This work was supported by ARC Centre of Excellence for Coral Reef Studies.

References

  1. Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol 49:641–652. doi: 10.1093/pcp/pcn037 CrossRefPubMedGoogle Scholar
  2. Camacho FG, Rodriguez JG, Miron AS, Garcia MC, Belarbi EH, Chisti Y, Grima EM (2007) Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 25:176–194. doi: 10.1016/j.biotechadv.2006.11.008 CrossRefPubMedGoogle Scholar
  3. Copois V, Bibeau F, Bascoul-Mollevi C, Salvetat N, Chalbos P, Bareil C, Candeil L, Fraslon C, Conseiller E, Granci V, Maziere P, Kramar A, Ychou M, Pau B, Martineau P, Molina F, Del Rio M (2007) Impact of RNA degradation on gene expression profiles: assessment of different methods to reliably determine RNA quality. J Biotechnol 127:549–559. doi: 10.1016/j.jbiotec.2006.07.032 CrossRefPubMedGoogle Scholar
  4. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139. doi: 10.1016/j.mam.2005.12.003 CrossRefPubMedGoogle Scholar
  5. Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28:1601–1613. doi: 10.1007/s10529-006-9127-2 CrossRefPubMedGoogle Scholar
  6. Fontanesi F, Soto IC, Barrientos A (2008) Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 60:557–568. doi: 10.1002/iub.86 CrossRefPubMedGoogle Scholar
  7. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  8. Harlow LD, Koutoulis A, Hallegraeff GM (2006) A novel, simplified technique for preservation and rapid isolation of total RNA from the toxic dinoflagellate Alexandrium catenella (Dinophyceae). Phycologia 45:311–318CrossRefGoogle Scholar
  9. Hoegh-Guldberg O (1999) Coral bleaching, climate change and the future of the world's coral reefs. Mar Freshw Res 50:839–866. doi: 10.1071/MF99078 CrossRefGoogle Scholar
  10. Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, Mueller O, Schroeder A, Auffray C (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33:e56. doi: 10.1093/nar/gni054 CrossRefPubMedGoogle Scholar
  11. Karako-Lampert S, Hershkovits G, Stambler N, Simon-Blecher N, Achituv Y, Dubinsky Z, Katcoff DJ (2006) Differential gene expression in Symbiodinium microadriaticum clade B following stress. Mar Biotechnol NY 8:268–274. doi: 10.1007/s10126-005-5008-2 CrossRefPubMedGoogle Scholar
  12. Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D (2007) Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals. J Phycol 43:1010–1021. doi: 10.1111/j.1529-8817.2007.00387.x CrossRefGoogle Scholar
  13. Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates. J Mol Biol 320:727–739. doi: 10.1016/S0022-2836(02)00468-0 CrossRefPubMedGoogle Scholar
  14. Madabusi LV, Latham GJ, Andruss BF (2006) RNA extraction for arrays. Methods Enzymol 411:1–14. doi: 10.1016/S0076-6879(06)11001-0 CrossRefPubMedGoogle Scholar
  15. Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056. doi: 10.1242/jeb.013284 CrossRefPubMedGoogle Scholar
  16. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  17. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi: 10.1186/1471-2199-7-3 CrossRefPubMedGoogle Scholar
  18. Strand C, Enell J, Hedenfalk I, Ferno M (2007) RNA quality in frozen breast cancer samples and the influence on gene expression analysis—a comparison of three evaluation methods using microcapillary electrophoresis traces. BMC Mol Biol 8:38. doi: 10.1186/1471-2199-8-38 CrossRefPubMedGoogle Scholar
  19. Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M (2008) Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci U S A 105:4203–4208. doi: 10.1073/pnas.0708554105 CrossRefPubMedGoogle Scholar
  20. Takishita K, Ishida K, Maruyama T (2003) An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte. Protist 154:443–454. doi: 10.1078/143446103322454176 CrossRefPubMedGoogle Scholar
  21. Toffaletti DL, Del Poeta M, Rude TH, Dietrich F, Perfect JR (2003) Regulation of cytochrome c oxidase subunit 1 (COX1) expression in Cryptococcus neoformans by temperature and host environment. Microbiology 149:1041–1049. doi: 10.1099/mic.0.26021-0 CrossRefPubMedGoogle Scholar
  22. Vesk M, Hallegraeff GM, Jeffrey SW (1990) Biology of marine plants. In: Clayton MN, King RJ (eds) Biology of marine plants. Longman Cheshire, Melbourne, pp 133–148Google Scholar
  23. Wang DZ (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6:349–371PubMedGoogle Scholar
  24. Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066. doi: 10.1242/jeb.009597 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Centre for Marine StudiesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations