Journal of Applied Phycology

, Volume 21, Issue 3, pp 279–285 | Cite as

Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii (Cyanophyta)

  • Ting Zhang
  • Lin Li
  • Lirong Song
  • Wei Chen


The effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii were determined. Of the three temperatures tested, 10, 25 and 35°C, the maximal geosmin concentration and geosmin productivity were yielded at 10°C, while the highest chl a production was observed at 25°C. In the studies on light intensity, the maximal geosmin concentration and geosmin productivity were observed at 10 μmol m−2 s−1, while the highest chl a production was at 20 μmol m−2 s−1. It was suggested that more geosmin was synthesized with lower chl a demand. Meanwhile, the relative amounts of extra- and intracellular geosmin were investigated. Under optimum growth conditions (20 μmol m−2 s−1, 25°C; BG-11 medium), the amounts of extracellular geosmin increased as the growth progressed and reached the maximum in the stationary phase, while the intracellular geosmin reached its maximum value in the late exponential phase, and then began to decline. However, under the low temperature (10°C) or light (10 μmol m−2 s−1) conditions, more intracellular geosmin was synthesized and mainly accumulated in the cells. The proportions of extracellular geosmin were high, to 33.33 and 32.27%, respectively, during the stationary phase at 35°C and 20 μmol m−2 s−1. It was indicated that low temperature or light could stimulate geosmin production and favor the accumulation of geosmin in cells, while more intracellular geosmin may be released into the medium at higher temperatures or optimum light intensity.


Off-flavor Geosmin Lyngbya kuetzingii Cyanobacteria 



This work was supported by grants from the Chinese Academy of Sciences Project (No. KZCX2-YW-426) and the Science Project of Hubei Province, China (No. 2006AA203A02). The authors would like to thank Prof. Qiu Baosheng of Huazhong Normal University, China for the editing of this manuscript.


  1. Blevins WT, Schrader KK, Saadoun I (1995) Comparative physiology of geosmin production by Streptomyces halstedii and Anabaena sp. Water Sci Technol 31(11):127–133 doi: 10.1016/0273-1223(95)00466-Z CrossRefGoogle Scholar
  2. Bowmer KH, Padovan A, Oliver RL, Korth W, Garf GG (1992) Physiology of geosmin production by Anabaena circinalis isolated from the Murrumbidgee River, Australia. Water Sci Technol 25(2):259–267Google Scholar
  3. Brown SW, Boyd CE (1982) Off-flavor in channel catfish from commercial ponds. Trans Am Fish Soc 111(3):379–383 doi: 10.1577/1548-8659(1982)111<379:OICCFC>2.0.CO;2 CrossRefGoogle Scholar
  4. Cane DE, Watt RM (2003) Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proc Natl Acad Sci USA 100:1547–1551 doi: 10.1073/pnas.0337625100 PubMedCrossRefGoogle Scholar
  5. Cane DE, He X, Kobayashi S, Omura S, Ikeda H (2006) Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J Antibiot 59:471–479PubMedCrossRefGoogle Scholar
  6. Dickschat JS, Bode HB, Mahmud T, Müller R, Schulz S (2005) A novel type of geosmin biosynthesis in myxobacteria. J Org Chem 70:5174–5182 doi: 10.1021/jo050449g PubMedCrossRefGoogle Scholar
  7. Gant E (1994) Supramolecular membrane organization. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, The Netherlands, pp 119–138Google Scholar
  8. Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. J Appl Microbiol 13(6):935–938Google Scholar
  9. Hamano Y, Dairi T, Yamamoto M, Kuzuyama T, Itoh N, Seto H (2002) Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain. Biosci Biotechnol Biochem 66:808–819 doi: 10.1271/bbb.66.808 PubMedCrossRefGoogle Scholar
  10. Izaguirre G, Taylor WD (1995) Geosmin and 2-methylisoborneol production in a major aqueduct system. Water Sci Technol 31(11):41–48 doi: 10.1016/0273-1223(95)00454-U CrossRefGoogle Scholar
  11. Izaguirre G, Taylor WD (1998) A Pseudanabaena species from Castaic Lake, California, that produces 2-methylisoborneol. Water Res 32(5):1673–1677 doi: 10.1016/S0043-1354(97)00379-5 CrossRefGoogle Scholar
  12. Jenkins D (1979) In: Snceyink VL (ed) Effects of organic compounds-taste, odor, color and chelation. Proceedings of the 15th water quality conference, organic matter in water supplies; occurrence significance and control. Ann Arbor Scientific Publications, Ann ArborGoogle Scholar
  13. Jensen SE, Anders CL, Goatcher LJ, Perley T, Kenefick S, Hrudey SE (1994) Actinomycetes as a factor in odour problems affecting drinking water from the North Saskatchewan River. Water Res 28(6):1393–1401 doi: 10.1016/0043-1354(94)90306-9 CrossRefGoogle Scholar
  14. Jiang J, He X, Cane DE (2006) Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. J Am Chem Soc 128:8128–8129 doi: 10.1021/ja062669x PubMedCrossRefGoogle Scholar
  15. Jüttner F (1995) Elimination of terpenoid odorous compounds by slow sand and river bank filtration of the Ruhr River, Germany. Water Sci Technol 31(11):211–217 doi: 10.1016/0273-1223(95)00478-6 CrossRefGoogle Scholar
  16. Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-methylisoborneol in source-waters. Appl Environ Microbiol 73(14):4395–4406 doi: 10.1128/AEM.02250-06 PubMedCrossRefGoogle Scholar
  17. Li L, Song LR, Gan NQ, Chen W (2005) Determination of odorous compounds in water using headspace solid-phase microextraction-gas chromatography-mass spectrometry. Chin J Anall Chem 33(8):1058–1062Google Scholar
  18. Li L, Wan N, Gan NQ, Xiao BD, Song LR (2007) Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China. Water Sci Technol 55(5):43–50 doi: 10.2166/wst.2007.160 PubMedCrossRefGoogle Scholar
  19. Lovell RT, Lelana IY, Boyd CE, Armstrong MS (1986) Geosmin and musty-muddy off-flavors in pond-raised channel catfish. Trans Am Fish Soc 115(3):485–489 doi:10.1577/1548–8659(1986)115<485:GAMFIP>2.0.CO;2CrossRefGoogle Scholar
  20. Martin JF, Suffet IH (1992) Chemical etiologies of off-flavor in channel catfish aquaculture. Water Sci Technol 25(2):73–79Google Scholar
  21. Martin JF, Mccoy CP, Greenleaf W, Bennett L (1987) Analysis of 2-methylisoborneol in water, mud, and channel catfish (Ictalurus punctatus) from commercial culture ponds in Mississippi. Can J Fish Aquat Sci 44(4):909–912 doi: 10.1139/f87-109 CrossRefGoogle Scholar
  22. Naes H, Post AF (1988) Transient states of geosmin, pigments, carbohydrates and proteins in continuous cultures of Oscillatoria brevis induced by changes in nitrogen supply. Arch Microbiol 150(4):333–337 doi: 10.1007/BF00408303 CrossRefGoogle Scholar
  23. Naes H, Aarnes H, Utkilen HC, Nilsen S, Skulberg OM (1985) Effect of photon fluence rate and specific growth rate on geosmin production of the cyanobacterium Oscillatoria brevis (Kütz.) Gom. Appl Environ Microbiol 49(6):1538–1540PubMedGoogle Scholar
  24. Naes H, Utkilen HC, Post AF (1988) Factors influencing geosmin production in the cyanobacterium Oscillatoria brevis. Water Sci Technol 20(8/9):125–131Google Scholar
  25. Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 436:189–192 doi: 10.1016/S0014-5793(98)01123-5 PubMedCrossRefGoogle Scholar
  26. Persson PE (1988) Odorous algal cultures in culture collections. Water Sci Technol 20:211–213Google Scholar
  27. Persson F, Heinicke G, Hedberg T, Hermansson M, Uhl W (2007) Removal of geosmin and MIB by biofiltration - an investigation discriminating between adsorption and biodegradation. Environ Technol 28(1):95–104PubMedCrossRefGoogle Scholar
  28. Peterson HG, Hrudey SE, Cantin IA, Perley TR, Kenefick SL (1995) Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Res 29(6):1515–1523 doi: 10.1016/0043-1354(94)00300-V CrossRefGoogle Scholar
  29. Reiss CR, Robert C, Owen C, Taylor JS (2006) Control of MIB, geosmin and TON by membrane systems. J Water Supply Res T 55(2):95–108Google Scholar
  30. Saadoun IMK, Schrader KK, Blevins WT (2001) Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Water Res 35(5):1209–1218 doi: 10.1016/S0043-1354(00)00381-X PubMedCrossRefGoogle Scholar
  31. Schrader KK, Blevins WT (1993) Geosmin-producing species of Streptomyces and Lyngbya from aquaculture ponds. Can J Microbiol 39(9):834–840CrossRefGoogle Scholar
  32. Schrader KK, de-Regt MQ, Tidwell PD, Tucker CS, Duke SO (1998) Compounds with selective toxicity towards the off-flavor metabolite-producing cyanobacterium Oscillatoria cf. chalybea. Aquaculture 163(1–2):85–99 doi: 10.1016/S0044-8486(98)00223-3 CrossRefGoogle Scholar
  33. Schrader KK, Dayan FE, Nanayakkara NPD (2005) Generation of reactive oxygen species by a novel anthraquinone derivative in the cyanobacterium Planktothrix perornata (Skuja). Pestic Biochem Physiol 81(3):198–207 doi: 10.1016/j.pestbp.2004.11.004 CrossRefGoogle Scholar
  34. Seto H, Watanabe H, Furihata K (1996) Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenyl diphosphate in Streptomyces aeriouvifer. Tetrahedron Lett 37:7979–7982 doi: 10.1016/0040-4039(96)01787-X CrossRefGoogle Scholar
  35. Seto H, Orihara N, Furihata K (1998) Studies on the biosynthesis of terpenoids produced by actinomycetes. Part 4. Formation of BE-40644 by the mevalonate and nonmevalonate pathways. Tetrahedron Lett 39:9497–9500 doi: 10.1016/S0040-4039(98)02154-6 CrossRefGoogle Scholar
  36. Spiteller D, Jux A, Piel J, Boland W (2002) Feeding of [5,4–2H2]-1-desoxy-D-xylulose and [4,4,6,6,6–2H5]-mevalolactone to a geosmin-producing Streptomyces sp. and Fossombronia pusilla. Phytochemistry 61:827–834 doi: 10.1016/S0031-9422(02)00282-0 Google Scholar
  37. Suffet IH, Mallevialle J, Kawczynski E (1995) Advances in taste-and-odor treatment and control. AWWARF, Denver, COGoogle Scholar
  38. Sugiura N, Nakano K (2000) Causative microorganisms for musty odor occurrence in the eutrophic Lake Kasumigaura. Hydrobiologia 434(1–3):145−150 doi: 10.1023/A:1004000511610 Google Scholar
  39. Sugiura N, Nishimura O, Inamori Y, Ouchiyama T, Sudo R (1997) Grazing characteristics of musty-odor-compound-producing Phormidium tenue by a microflagellate, Monas guttula. Water Res 31(11):2792–2796 doi: 10.1016/S0043-1354(97)00115-2 CrossRefGoogle Scholar
  40. Sugiura N, Iwami N, Inamori Y, Nishimura O, Sudo R (1998) Significance of attached cyanobacteria relevant to the occurrence of musty odor in Lake Kasumigaura. Water Res 32(12):3549–3554 doi: 10.1016/S0043-1354(98)00153-5 CrossRefGoogle Scholar
  41. Tabachek JL, Yurkowski M (1976) Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin, and 2-methylisoborneol, in saline lakes in Manotoba. J Fish Res Board Can 33(1):25–35Google Scholar
  42. Tucker CS (2000) Off-flavor problems in aquaculture. Rev Fish Sci 8:45–88 doi: 10.1080/10641260091129170 CrossRefGoogle Scholar
  43. van der Ploeg M, Tucker CS, Steeby J, Weirich C (2001) Management plan for blue-green off-flavors in Mississippi pond-raised catfish. Mississippi State University Extension Service, pp 1–10Google Scholar
  44. Westerhoff P, Nalinakumari B, Pei P (2006) Kinetics of MIB and geosmin oxidation during ozonation. Ozone Sci Eng 28:277–286 doi: 10.1080/01919510600892836 CrossRefGoogle Scholar
  45. Wintermans JFGM, de Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta 109:448–453 doi: 10.1016/0926-6585(65)90170-6 PubMedCrossRefGoogle Scholar
  46. Wnorowski AU (1992) Tastes and odors in the aquatic environment: a review. Water SA 18:203–214Google Scholar
  47. Wnorowski AU, Scott WE (1992) Incidence of off-flavors in South African surface waters. Water Sci Technol 25:225–232Google Scholar
  48. Wood S, William ST, White WR (2001) Microbes as a source of earthy flavours in potable water - a review. Int Biodeterior Biodegradation 48(1):26–40 doi: 10.1016/S0964-8305(01)00064–6 CrossRefGoogle Scholar
  49. Wu JT, Jüttner F (1988a) Effect of environmental factors on geosmin production by Fischerella muscicola. Water Sci Technol 20(8/9):143–148Google Scholar
  50. Wu JT, Jüttner F (1988b) Differential partitioning of geosmin and 2-methylisoborneol between cellular constituents in Oscillatoria tenuis. Arch Microbiol 150:580–583 doi: 10.1007/BF00408253 CrossRefGoogle Scholar
  51. Zander AK, Pingert P (1997) Membrane-based extraction for detection of tastes and odors in water. Water Res 31(2):301–309 doi: 10.1016/S0043-1354(96)00254-0 CrossRefGoogle Scholar
  52. Zimba PV, Dionigi CP, Millie DF (1999) Evaluating the relationship between photopigments and secondary metabolite accumulation in cyanobacteria. J Phycol 35(6):1422–1429 doi: 10.1046/j.1529-8817.1999.3561422.x CrossRefGoogle Scholar
  53. Zimba PV, Grimm CC, Dionigi CP (2001) Phytoplankton community structure, biomass, and off-flavor: pond-size relationships in Louisiana catfish ponds. J World Aquacult Soc 32:96–104 doi: 10.1111/j.1749-7345.2001.tb00927.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyThe Chinese Academy of SciencesWuhanPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations