Journal of Applied Phycology

, Volume 21, Issue 2, pp 193–197 | Cite as

Seaweed meal as a protein source for the white shrimp Litopenaeus vannamei

  • Robson Liberal da Silva
  • José Milton Barbosa


The rhodophytes Hypnea cervicornis and Cryptonemia crenulata are abundant along the Brazilian coastline and are rich in nutrients. They may therefore be used as a source of protein in shrimp diets. The aim of the present study was to test this hypothesis. The experiment was conducted in a laboratory, where 10-day-old post-larvae aged underwent 7 days of acclimation in a 1,000 L tank. They were then kept in plastic aquariums, each containing 10 L, and 20 larvae were fed daily (10% of biomass) in four equal portions with one of four diets (five repetitions of each) for a period of 45 days. All diets contained 30% crude protein (isoprotein) and 300 kcal 100 g−1 (isocaloric), with different percentages of seaweed powder: Diet “A” 39%; Diet “B” 26%, Diet “C” 13%, and Diet “D” without seaweed (control diet). Algae were collected, rinsed, dried and ground up for the feed formulations. Weight of the animals was measured at the beginning of the experiment and at 15-day intervals to assess their growth. The physico-chemical variables of the water were measured every 2 days. Final biomass, biomass gain and specific growth rate (SGR) exhibited no significant differences between treatments (P > 0.05). Survival rate was equal under the four experimental conditions, being consistent within four decimal places 95.2% to 97.00% (P > 0.05). Diets “A” and “B”, with a greater content of algae, exhibited better feed conversion (1.79:1 and 1.82:1) than Diets “C” and “D” (2.04:1 and 2.08:1) (P < 0.05). The physical-chemical variables of the water showed no significant variation and remained within the standards necessary for the wellbeing of the animals. If sufficient biomass of beached algae can be practically and economically collected, it may be used as a component in the making of shrimp feed.


Feed conversion Weight gain Diet Algae Rhodophyta 


  1. Álvarez AL, Racotta IS, Arjona O, Palacios E (2004) Salinity stress test as a predictor of survival during grow out in Pacific’s white shrimp (Litopenaeus vannamei). Aquaculture 237:237–249 DOI 10.1016/j.aquaculture.2004.03.029 CrossRefGoogle Scholar
  2. Barbieri RC, Ostrensky-Neto A (2001) Camarões Marinhos, Reprodução, Maturação e Larvicultura. Aprenda Fácil, ViçosaGoogle Scholar
  3. Clifford HC (1992) Marine shrimp pond management: a review. In: Chamberlain GW, Villalón J, Wyban J (eds) Proceeding of special session on shrimp farming, 1992. World Aquaculture Society, Orlando, pp 110–137Google Scholar
  4. Cornejo MAP, Curdova LM, Barajas FM, Pramo JN, Clark GP (1999) Efeito de la macroalga Caulerpa sertularioides en el desarrollo del camarón Penaeus californiensis (Decapoda: Peneidae). Centro de Investigaciones Biológicas del Noroeste, SonoraGoogle Scholar
  5. Correia ES, Silva-Junior RF, Nono RGB, Santos RMS (2004) Avaliação do crescimento do camarão marinho (Litopenaeus vannamei) e da qualidade da água em função da utilização de quatro rações comerciais. VI Simpósio Brasileiro de Criadores de Camarão, 2004, NatalGoogle Scholar
  6. Cruz-Suárez LE, Rieque-Marie D, Tapia-Salazar M, Guajardo-Barbosa C (2000) Uso de harina de kelp (Macrocystis pyrifera) en alimentos para camarón. Avances en Nutrición Acuicola. V Simposium Internacional de Nutrición Acuícola, 2000. Centro de Investigaciones y de Estudios Avanzados, Mérida, pp 1–40Google Scholar
  7. Diaz-Peferrer E, Lopéz H (1961) Taxonomia, ecologia y valor nutrimental de algas marinas cubanas. Instituto Cubano de Investigación Tecnológica, Serie Estudios Sobre Trabajos de Investigación, HabanaGoogle Scholar
  8. EMBRAPA (1989) Tábua de composição química e valores energéticos de alimentos para suínos e aves. Centro Nacional de Pesquisa de Suínos e Aves, ConcórdiaGoogle Scholar
  9. FAO (2005) Aquaculture production statistics. Available as: http:/ Accessed on 24 October 24 2005
  10. Halperin DR (1971) Las algas en la alimentación humana. Contribución Técnica n. 10. CIBIMA, Buenos AiresGoogle Scholar
  11. He H, Lawrence AL (1993) Vitamin C requirements of the shrimp Penaeus vannamei. Aquaculture 114:305–316 DOI 10.1016/0044-8486(93)90305-I CrossRefGoogle Scholar
  12. McGraw WJ, Scarpa J (2004) Mortality of freshwater-acclimated Litopenaeus vannamei associated with acclimation rate, habituation period, and ionic challenge. Aquaculture 236:285–296 DOI 10.1016/j.aquaculture.2004.01.037 CrossRefGoogle Scholar
  13. National Research Council (1989) Nutrient requirements of warmwater fishes and shellfishes. National Academy, WashingtonGoogle Scholar
  14. Pedreschi-Neto O (1999) Utilização de resíduos do milho de pipoca (Zea mays L.) em rações para pós-larvas do camarão Litopenaeus vannamei (Boone, 1931). Dissertation, Federal University of PernambucoGoogle Scholar
  15. Rocha MRM, Nunes ML, Figueiredo MJ (1998) Cultivo de pós-larvas de Penaeus vannamei em berçários intensivos. Anais Aqüicultura Brasil ’98, Recife, pp 298–299Google Scholar
  16. Tahil AS, Juinio-Menez MA (1999) Natural diet, feeding periodicity and functional response to food density of the abalone, Haliotis asinina L., (Gastropoda). Aquacult Res 30:95–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robson Liberal da Silva
    • 1
  • José Milton Barbosa
    • 2
  1. 1.Departamento de BioquímicaUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de Pesca e AqüiculturaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations