Journal of Applied Phycology

, Volume 21, Issue 1, pp 11–18

Epi-endophytic symbiosis between Laminariocolax aecidioides (Ectocarpales, Phaeophyceae) and Undaria pinnatifida (Laminariales, Phaeophyceae) growing on Argentinian coasts

  • M. Cecilia Gauna
  • Elisa R. Parodi
  • Eduardo J. Cáceres
Article

Abstract

The present is the first study on epi-endophytic algae on thalli of Undaria pinnatifida growing along Argentinian coasts. The main goal is to describe the nature and the morphology of this symbiosis. Individuals of Laminariocolax aecidioides were detected in both June and December 2004, growing on U. pinnatifida sporophytes. In nature, the epi-endophyte were macroscopically observed as dark zones that partially covered the hosts’ fronds. L. aecidioides vegetative thalli were irregularly branched uniseriate filaments. The life cycle is described from laboratory cultures started from Patagonian populations. Caryology revealed that the sporophytic diploid phase presented 16 chromosomes whereas the gametophytic haploid phase presented 8 chromosomes. Isolates made from thalli growing in the interior of infected hosts developed into filamentous, branched sporophytes that reproduced by both unispores and plurispores that were produced in unilocular and plurilocular sporangia, respectively. The results of this paper also allowed us to conclude that L. aecidioides uses the thalli of U. pinnatifida as a proper substrate. The penetration of endophitic filaments among the host´s cortical cells produced a lateral compression and, finally, their thalli development generated perforations in the host tissues. The effects of the epi-endophytic infection of L. aecidioides on U. pinnatifida are neither severe nor deleterious.

Keywords

Argentina Epi-endophyte algae Laminariocolax aecidioides Phaeophyceae Undaria pinnatifida 

References

  1. Abbott IA, Hollenberg GJ (1976) Marine Algae of California. Stanford University Press, CalifGoogle Scholar
  2. Adams NM (1994) Seaweeds of New Zealand. An Illustrated Guide. Canterbury University Press, ChristchurchGoogle Scholar
  3. Aguilar-Rosas R, Aguilar-Rosas LE, Avila Serrano G et al (2004) First record of Undaria pinnatifida (Harvey) Suringar (Laminariales, Phaeophyta) on the Pacific coast of Mexico. Bot Mar 47:255–258CrossRefGoogle Scholar
  4. Andrews JH (1977) Observations on the pathology of seaweeds in the Pacific Northwest. Can J Bot 55:1019–1027CrossRefGoogle Scholar
  5. Apt KE (1988) Etiology and development of hyperplasia induced by Streblonema sp. (Phaeophyta) on members of the Laminariales (Phaeophyta). Phycologia 24:28–34CrossRefGoogle Scholar
  6. Berkowitz LR, Fiorello O, Maxwell DS (1968) Selective staining of nervous tissue for light microscopy preparation for electron microscopy. J Histochem Cytochem 16:808PubMedGoogle Scholar
  7. Burkhardt E, Peters AF (1998) Molecular evidence from nr DNA ITS sequences that Laminariocolax (Phaeophyceae, Ectocarpales sensu lato) is a world-wide clade of closely related kelp endophytes. J Phycol 34:669–681CrossRefGoogle Scholar
  8. Christensen T (1982) Alger i naturen og i laboratoriet. Nucleus Århus. DenmarkGoogle Scholar
  9. Correa JA, McLachlan JL (1991) Endophytic algae of Chondrus crispus (Rhodophyta). III. Host specificity. J Phycol 27:448–459CrossRefGoogle Scholar
  10. Correa JA, McLachlan JL (1992) Endophytic algae of Chondrus crispus (Rhodophyta). IV. Effects on the host following infections by Acrochaete operculata and A. heteroclada (Chlorophyta). Mar Ecol Prog Ser 81:73–87CrossRefGoogle Scholar
  11. Correa JA, McLachlan JL (1994) Endophytic algae of Chondrus crispus (Rhodophyta). V. Fine structure of the infection by Acrochaete operculata (Chlorophyta). Eur J Phycol 29:33–48CrossRefGoogle Scholar
  12. Correa JA, Nielsen R, Grund DW (1988) Endophytic algae of Chondrus crispus (Rhodophyta). II. Acrochaete heteroclada sp. nov. A. operculata sp. nov., and Phaeophila dendroides (Chlorophyta). J Phycol 24:528–539Google Scholar
  13. Correa JA, Flores V, Sánchez P (1993) Deformative disease in Iridaea laminarioides (Rhodophyta): gall development associated with an endophytic cyanobacterium. J Phycol 29:853–860CrossRefGoogle Scholar
  14. Correa JA, Flores V, Garrido J (1994) Green patch disease in Iridaea laminarioides (Rhodophyta) caused by Endophyton sp. (Chlorophyta). Dis Aquat Organ 19:203–213CrossRefGoogle Scholar
  15. Dangeard P (1931) Sur un Ectocarpus parasite provoquant des tumeurs chez le Laminaria flexicaulis (Ectocarpus deformans sp. nov.). CR Acad Sci Paris 192:57–60Google Scholar
  16. Derbès A, Solier AJJ (1851) Algues. In: Castagne JLM (ed) Supplément au catalogue des plantes qui croissent naturellement aux environs de Marseille. Nicot & Pardigon, AixGoogle Scholar
  17. Ellertsdóttir E, Peters AF (1997) High prevalence of endophytic brown algae in populations of Laminaria spp. (Phaeophyceae). Mar Ecol Prog Ser 146:135–143CrossRefGoogle Scholar
  18. Fletcher RL, Manfredi C (1995) The occurrence of Undaria pinnatifida (Phaeophyceae, Laminariales) on the south coast of England. Bot Mar 38:355–358CrossRefGoogle Scholar
  19. Floc’h JY, Pagot R, Wallentinus I (1991) The Japanese brown alga Undaria pinnatifida on the coast of France and its possible establishment in European waters. J Cons Int Explor Mer 47:379–390Google Scholar
  20. Fritsch FE (1945) The structure and reproduction of the algae. Cambridge University Press, CambridgeGoogle Scholar
  21. Gauna MC (2005) Relaciones interespecíficas en macroalgas bentónicas de la costa patagónica: epi-endofitismo algal. MSc Thesis. Universidad Nacional del Sur ArgentinaGoogle Scholar
  22. Hardy FG, Guiry MD (2003) A check-list and atlas of the seaweeds of Britain and Ireland. British Phycological Society, LondonGoogle Scholar
  23. Hay CH, Luckens PA (1987) The Asian kelp Undaria pinnatifida (Phaeophyta: Laminariales) found in a New Zealand harbour. NZ J Bot 25:329–332Google Scholar
  24. Hayat MA (1986) Basic techniques for transmission electron microscopy. Academic Press, LondonGoogle Scholar
  25. Heesch S, Peters AF (1999) Scanning electron microscopy observation of host entry by two brown algae endophytic in Laminaria saccharina (Laminariales, Phaeophyceae). Phycol Res 47:1–5CrossRefGoogle Scholar
  26. Johansen DA (1940) Plant microtechnique. McGraw Hill, New YorkGoogle Scholar
  27. Kawai H, Tokuyama M (1995) Laminarionema elsbetiae gen. et sp. nov. (Ectocarpales, Phaeophyceae), a new endophyte in Laminaria sporophytes. Phycol Res 43:185–190CrossRefGoogle Scholar
  28. Kuckuck P (1854) Ectocarpaceen-Studien II. Streblonema. Helgoländer Wiss Meeresun 5:103–117CrossRefGoogle Scholar
  29. Kuckuck P (1894) Bemerkungen zur marinen Algenvegetation von Helgoland. I. Wiss. Meeresun Neve Folge 1:223–263Google Scholar
  30. Kylin H (1947) Die Phaeophyceen der schwedischen Westküste. Acta Univ Lund 43:1–99Google Scholar
  31. Lee YP, Yoon JT (1998) Taxonomy and morphology of Undaria (Alariaceae, Phaeophyta) in Korea. Alga Korean J Phycol 13:427–446Google Scholar
  32. Lein TE, Sjøtun K, Wakili S (1991) Mass-occurrence of brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia 76:187–193Google Scholar
  33. Lewin J (1966) Silicon metabolism in Diatoms 5: Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1–12Google Scholar
  34. Lewis RJ (1996) Chromosomes of the brown algae. Phycologia 35:19–40CrossRefGoogle Scholar
  35. Martín LA, Miravalles AB, Boraso de Zaixso et al (2007) Epífitos del alga agarófita Gracilaria gracilis (Rhodophyta) en Bahía Bustamante (Chubut, Argentina) In: Abstracts of the XII congresso latino-americano de ciências do mar, ALICMAR, Florianópolis, Brasil, 15–19 April 2007Google Scholar
  36. Nelson WA (1999) A revised checklist of marine algae naturalised in New Zealand. NZ J Bot 37:355–359Google Scholar
  37. Núnez O (1968) An acetic-hematoxilin squash method for small choromosomes. Caryologia 21:115–119Google Scholar
  38. Pedersen PM (1981) The life histories in culture of the brown algae Gononema alariae sp. nov. and G. aecidioides comb. nov. from Greenland. Nord J Bot 1:263–270CrossRefGoogle Scholar
  39. Pedersen PM (1984) Studies on primitive brown algae (Fucophyceae). Opera Bot 74:1–76Google Scholar
  40. Peters AF (1990) Taxonomic implications of gametes fusions in the parasitic brown alga Herpodiscus durvillaeae. Can J Bot 68:1398–1401CrossRefGoogle Scholar
  41. Peters AF (1991) Field and culture studies of Streblonema macrocystis sp. nov. (Ectocarpales, Phaeophyceae) from Chile, a sexual endophyte of giant kelp. Phycologia 30:365–377Google Scholar
  42. Peters AF, Ellertsdóttir E (1996) New record of the kelp endophyte Laminarionema elsbetiae (Phaeophyceae, Ectocarpales) at Helgoland and its life history in culture. Nova Hedw 62:341–349Google Scholar
  43. Peters AF, Schaffelke B (1996) Streblonema (Ectocarpales, Phaeophyceae) infection in the kelp Laminaria saccharina (Laminariales, Phaeophyceae) in the western Baltic. Hydrobiología 326–327:111–116CrossRefGoogle Scholar
  44. Piriz ML, Casas G (1994) Occurrence of Undaria pinnatifida in Golfo Nuevo, Argentina. Appl Phycol Forum 10:4Google Scholar
  45. Provasoli L (1968) Media and prospect for the cultivation of marine algae. In: Watanabe A (ed) Cultures and collections of algae, Japanese Society for Plant Physiology, Japan, pp 63–75Google Scholar
  46. Reinsch PF (1875) Contributiones ad algologian et fungologian. Nürnberg 1:1–103Google Scholar
  47. Russell G (1983a) Formation of an ectocarpoid epiflora on blades of Laminaria digitata. Mar Ecol Prog Ser 11:181–187CrossRefGoogle Scholar
  48. Russell G (1983b) Parallel growth in algal epiphytes and Laminaria blades. Mar Ecol Prog Ser 13:303–304CrossRefGoogle Scholar
  49. Sauvageau C (1898) Sur quelques Myrionémacées. Ann SC Nat Bot 5:161–288Google Scholar
  50. Setchell WA, Gardner NL (1922) Phycological contributions. V. New species of Pylaiella and Streblonema. Contrib Univ Calif 7:385–402Google Scholar
  51. South GR (1974) Herpodiscus gen. nov. and Herpodiscus durvilleae (Lindauer) comb. nov., a parasite of Durvillea antarctica (Chamisso) Hariot endemic to New Zealand. J R Soc NZ 4:455–461Google Scholar
  52. South GR, Tittley I (1986) A checklist and distributional index of the benthic marine algae of the North Atlantic Ocean. British Museum (Natural History) and Huntsman Marine LaboratoryGoogle Scholar
  53. Suringar WFR (1873) Illustrations des algues du Japon. Musée Botanique de Leide 1:77–90Google Scholar
  54. Tseng CK (1984) Common seaweeds of China. Science Press, BeijingGoogle Scholar
  55. Veiga AJ, Cremades J, Bárbara I (1997) Gononema aecidioides (Ectocarpaceae) un nuevo feófito para la Península Ibérica. Anales Jardín Botánico de Madrid 55(1):155–156Google Scholar
  56. Villalard-Bohnsack M, Harlin MM (2001) Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Rhode Island waters (USA): geographical expansion, morphological variations and associated algae. Phycologia 40:372–380CrossRefGoogle Scholar
  57. Womersley HBS (2003) The marine benthic flora of southern Australia: Ceramiales, Delesseriaceae, Sarcomeniaceae, Rhodomelaceae. Australian Biological Resources Study and State Herbarium of South AustraliaGoogle Scholar
  58. Yoshida T, Akiyama K (1979) Streblonema (Phaeophyta) infection in the frond of cultivated Undaria (Phaeophyceae). In: Proc Ninth Int Seaweed Symp 9:219–223Google Scholar
  59. Yoshida T, Nakajima Y, Nakata Y (1990) Check-list of marine algae of Japan. Jpn J Phycol 38:269–320Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Cecilia Gauna
    • 1
    • 3
  • Elisa R. Parodi
    • 1
  • Eduardo J. Cáceres
    • 2
  1. 1.Laboratorio de Ecología AcuáticaUniversidad Nacional del Sur-Instituto Argentino de Oceanografía (CONICET)Bahía BlancaArgentina
  2. 2.Laboratorio de Ficología y MicologíaUniversidad Nacional del SurBahía BlancaArgentina
  3. 3.Laboratorio de FicologíaInstituto de Argentino de Oceanografía (I.A.D.O.)Bahía BlancaArgentina

Personalised recommendations