Journal of Applied Phycology

, Volume 19, Issue 3, pp 247–254 | Cite as

In vitro recruitment of Ulva sp. and Enteromorpha sp. on gametophytic and tetrasporophytic thalli of four populations of Chondracanthus chamissoi from Chile

  • Cristian R. Bulboa
  • Juan E. Macchiavello
  • Karina Veliz
  • Erasmo C. Macaya
  • Eurico C. Oliveira


Chondracanthus chamissoi is a red alga which is acquiring an increasing economic importance in Chile and becoming a target species for cultivation. Because epiphytism is a major problem in the mariculture of seaweeds, the recruitment of Ulva sp. and Enteromorpha sp. on gametophytic (cystocarpic) and tetrasporophytic thalli of C. chamissoi was tested in vitro on four populations from different locations in Chile. For Ulva sp., the density, cover and length of the recruits varied between the reproductive phases of the host and among the studied populations of C. chamissoi. In most experiments, a larger number of epiphytic thalli was observed on gametophytic plants of C. chamissoi; populations from Calderilla and Lechagua had a higher resistance to epiphytism. For Enteromorpha sp., its ability to grow epiphytically on both phases of the host showed a greater variability, but was inferior to that of Ulva sp. The differential resistance to epiphytism in both reproductive phases and in plant origin indicates the possibility of obtaining selected strains of C. chamissoi with lower susceptibility to epiphytism that could be utilized in planning maricultural programs.

Key words

Chile Chondracanthus chamissoi Enteromorpha epiphytism rhodophyta Ulva 



C. Bulboa is grateful to the Red Latinoamericana de Botánica (RLB - Tyler Prize 2004) for the PhD fellowship. We are grateful to Jaime Montenegro, Francisco Galleguillos and Eduardo Gómez for assistance in the field. We wish to thank Dr. Joe Zuccarello for correction of the English and helpful comments on the manuscript.


  1. Acleto C (1986) Algunos aspectos biológicos de Gigartina chamissoi (C. Ag.) J. Agardh (Rhodophyta, Gigartinales). Rev Cs Univ Nac San Marcos 74:33–47Google Scholar
  2. Ask EI, Azanza RV (2002) Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206:257–277CrossRefGoogle Scholar
  3. Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650PubMedCrossRefGoogle Scholar
  4. Bouarab K, Potin P, Weinberger F, Correa J, Kloareg B (2001) The Chondrus crispus Acrochaete operculata host-pathogen association, a novel model in glycobiology and applied phycopathology. J Appl Phycol 13:185–193CrossRefGoogle Scholar
  5. Bulboa CR (2001) Aspectos reprodutivos e biológicos de Kappaphycus alvarezii (Doty) Doty ex P. Silva e K. striatum (Schmitz) Doty (Gigartinales, Rhodophyta). Bases para introdução e cultivo de espécies exóticas no litoral brasileiro, Dissertation, Universidade de São PauloGoogle Scholar
  6. Bulboa CR, Macchiavello JE (2001) The effects of light and temperature on different phases of the life history in the carrageenan producing alga Chondracanthus chamissoi (Rhodophyta, Gigartinales). Bot Mar 44:371–374CrossRefGoogle Scholar
  7. Bulboa CR, Macchiavello JE, Oliveira EC, Fonck E (2005) First attempt to cultivate the carrageenan-producing seaweed Chondracanthus chamissoi (C. Agardh) Kutzing (Rhodophyta; Gigartinales) in Northern Chile. Aquac Res 36:1069–1074CrossRefGoogle Scholar
  8. Buschmann AH, Gómez P (1993) Interaction mechanisms between Gracilaria chilensis (Rhodophyta) and epiphytes. Hydrobiologia 261:345–351CrossRefGoogle Scholar
  9. Buschmann AH, Kuschel FA, Vergara PA, Schulz J (1992) Intertidal Gracilaria farming in southern Chile-differences of the algal proveniance. Aquat Bot 42:327–337CrossRefGoogle Scholar
  10. Cho JY, Kwon EH, Choi JS, Hong SY, Shin HW, Hong YK (2001) Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. J Appl Phycol 13:117–125CrossRefGoogle Scholar
  11. Craigie JS, Leigh C (1978) Carrageenans and agar. In: Hellebust JA, Craigie JS (eds) Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 109–131Google Scholar
  12. D’Antonio C (1985) Epiphytes on the rocky intertidal red alga Rhodomela larix (Turner) C Agardh: negative effects on the host and food for herbivores? J Exp Mar Biol Ecol 86:197–218CrossRefGoogle Scholar
  13. de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271Google Scholar
  14. Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas, Texas. Contr Mar Sci Suppl 15:1–228Google Scholar
  15. Fletcher RL (1995) Epiphytism and fouling in Gracilaria cultivation: an overview. J Appl Phycol 7:325–333CrossRefGoogle Scholar
  16. Garcia-Jimenez P, Marian FD, Rodrigo M, Robaina MM (1999) Sporulation and sterilization method for axenic culture of Gelidium canariensis. J Biotechnol 70:227–229CrossRefGoogle Scholar
  17. González J, Meneses I (1996) Differences in the early stages of development of gametophytes and tetrasporophytes of Chondracanthus chamissoi (CAg) Kutzing from Puerto Aldea, Northern Chile. Aquaculture 143:91–107CrossRefGoogle Scholar
  18. González J, Meneses I, Vásquez JA (1997) Field studies in Chondracanthus chamissoi (C. Agardh) Kutzing: seasonal and spatial variations in life cycle phases. Biol Pesq 26:3–12Google Scholar
  19. Harder T, Dobretsov S, Qian P (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141Google Scholar
  20. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294CrossRefGoogle Scholar
  21. Hellio C, Berge JP, Beaupoil C, Le Gal Y, Bourgougnon N (2002) Screening of marine algal extracts for anti-settlement activities against microalgae and macroalgae. Biofouling 18:205–215CrossRefGoogle Scholar
  22. Hellio C, Marechal JP, Veron B, Bremer G, Clare AS, Le Gal Y (2004) Seasonal variation of antifouling activities of marine algae from the Brittany coast (France). Mar Biotechnol 6:67–82PubMedCrossRefGoogle Scholar
  23. Hoffmann A, Santelices B (1997) Flora Marina de Chile Central. Ediciones Universidad Católica de Chile, Santiago, ChileGoogle Scholar
  24. Jennings JG, Steinberg PD (1997) Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109:461–473CrossRefGoogle Scholar
  25. Kuschel FA, Buschmann AH (1991) Abundance, effects and management of epiphytism in intertidal cultures of Gracilaria (Rhodophyta) in Southern Chile. Aquaculture 92:7–19CrossRefGoogle Scholar
  26. Lüning K, Pang SJ (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119CrossRefGoogle Scholar
  27. Oliveira EC, Paula J, Plastino M, Petti R (1995) Metodologias para el cultivo no axénico de macroalgas marinas in vitro. In: Alveal K, Ferrario ME, Oliveira E, Sar E (eds) Manual de métodos ficológicos. Universidad de Concepción, Concepción, pp 429–447Google Scholar
  28. Oliveira EC, Alveal K, Anderson RJ (2000) Mariculture of the agar-producing Gracilarioid red algae. Rev Fish Sci 8:345–377Google Scholar
  29. Ramírez ME, Santelices B (1991) Catálogo de las algas marinas bentónicas de la costa temperada del del Pacifico de Sudamerica. Monografías Biológicas 5Google Scholar
  30. Rothäusler E, Macaya EC, Molis M, Wahl M, Thiel M (2005) Laboratory experiments examining inducible defense show variable responses of temperate brown and red macroalgae. Rev Chil Hist Nat 78:603–614CrossRefGoogle Scholar
  31. Santelices B (1992) Strain selection of clonal seaweeds. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress, Bristol, pp 85–116Google Scholar
  32. Santelices B, Ugarte R (1990) Ecological differences among Chilean population of commercial Gracilaria. J Appl Phycol 2:17–26CrossRefGoogle Scholar
  33. Santelices B, Varela D (1993) Exudates from Gracilaria chilensis stimulate settlement of epiphytic ulvoids. Hydrobiologia 261:327–333CrossRefGoogle Scholar
  34. Steinberg PD, de Nys R, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12:227–244CrossRefGoogle Scholar
  35. Trono G (1993) Eucheuma and Kappaphycus: taxonomy and cultivation. In: Ohno M, Critchley AT (eds) Seaweed cultivation and marine ranching. Japan International Cooperation Agency, Kanagawa, Japan, pp 75–88Google Scholar
  36. Vásquez JA, Vega JM (2001) Chondracanthus chamissoi (Rhodophyta, Gigartinales) in Northern Chile: ecological aspects for management of wild populations. J Appl Phycol 13:267–277CrossRefGoogle Scholar
  37. Wheeler W, Neushul M, Harger B (1981) Development of a coastal marine farm and its associated problems. In: Levring T (ed) Proceedings of the Tenth International Seaweed Symposium. Walter de Gruyter, Berlin, pp 631–636Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Cristian R. Bulboa
    • 1
  • Juan E. Macchiavello
    • 1
  • Karina Veliz
    • 1
  • Erasmo C. Macaya
    • 1
  • Eurico C. Oliveira
    • 2
  1. 1.Departamento de Biología a Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  2. 2.Departamento de Botânica, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations