Advertisement

Journal of Applied Phycology

, Volume 18, Issue 6, pp 757–767 | Cite as

Preliminary characterisation of the blue-green pigment “marennine” from the marine tychopelagic diatom Haslea ostrearia (Gaillon/Bory) Simonsen

  • Jean-Bernard Pouvreau
  • Michèle Morançais
  • Fabrice Fleury
  • Philippe Rosa
  • Laurent Thion
  • Blanche Cahingt
  • Franck Zal
  • Joël Fleurence
  • Pierre PondavenEmail author
Original Article

Abstract

Haslea ostrearia is a common marine tychopelagic diatom which has the particularity of synthesizing a blue-green hydrosoluble pigment called “marennine”. This pigment, when released into the external medium, is known to be responsible for the colour of oyster gills. Here we present results for main biophysical and biochemical characteristics of pure intra- and extracellular marennine. Tests for chemical determination show that the nature of the two forms of marennine cannot be distinguished and could be related to a polyphenolic compound. Nevertheless, based on spectral properties and the molecular weight, which is about 10751 ± 1 and 9893 ± 1 Da, for the intracellular and extracellular forms respectively, we assess that the pigment accumulated in the apex of the cell and the one released in the external medium have probably distinct molecular structures.

Keywords

Diatom Haslea ostrearia Marennine Microalga Oyster Pigment Polyphenol 

Abbreviations:

EMn

Pure Extracellular Marennine

IMn

Pure Intracellular Marennine

Ph. Eq.

Phenol Equivalent

Phl. Eq.

Phloroglucinol Equivalent

BSA Eq.

Bovin Serum Albumine Equivalent

Gluc. Eq.

Glucose Equivalent; PVPP, Polyvinylpolypyrrolydone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachrach E (1935) Le bleuissement des diatomées et le verdissement des huîtres. Rev Trav Inst Pêches Mar 8 :112–123Google Scholar
  2. Blume R, Lachmann H, Mauser H, Schneider F (1974) New methods for spectrophotometric determination of pK values. I. Titration and simultaneous titration of monovalent protolytes. Z Naturforsch 29(b):500–513Google Scholar
  3. Bocat L (1907) Sur la marennine de la diatomée bleue; comparaison avec la phycocyanine. C R Soc Biol 62:1073–1075Google Scholar
  4. Bornet E, Chatin AD (1895) Le verdissement des huîtres. Bull Soc R Cent Agric 55:428–439Google Scholar
  5. Box JD (1983) Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Dubois M, Gilles KA, Hamilton JK, Rebers, PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  8. Gaillon B (1820) Des huîtres vertes et des causes de cette coloration. J Phys Chim Hist Nat 91:222–225Google Scholar
  9. Genevès L, Choussy M, Barbier M, Neuville, D, Daste PH (1976) Ultrastructure et composition pigmentaire comparée des chromatophores de la diatomée Navicula ostrearia (Gaillon) BORY normale et bleue. C R Acad Sci Paris 282(Série D):449–452Google Scholar
  10. Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40: 801–805Google Scholar
  11. Greg C, David ML (2003) Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia 137:32–41CrossRefGoogle Scholar
  12. Gross EM, Meyer H, Schilling G (1996) Release and ecological impact of algicidal hydrolyzable polyphenols in Myriophyllum spicatum. Phytochem 41:133–138CrossRefGoogle Scholar
  13. Guillard RL (1975) Culture of phytoplancton for feeding marine invertebrates. In Smith WL, Chadley MH (eds) Culture of marine invertebrate animals. Plenum Press New York, pp 26–60Google Scholar
  14. Hardouin V, Vandanjon L, Jaouen P, Robert JM (1994) Procédé combiné extraction-membranes pour l'isolement et la purification de pigments naturels. Actes Colloque Interfiltra Intermembranes, Paris, pp 175–181Google Scholar
  15. Laemmli UK (1970) Cleavage of the structural proteins of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  16. Lankester ER (1886) On green oysters. Quart J Microsc Sci 26: 71–94Google Scholar
  17. Loomis WD, Battaile J (1966) Plant phenolic compounds and the isolation of plant enzymes. Phytochem 5:423–438CrossRefGoogle Scholar
  18. Lowry OH, Rosebrough MJ, Farr AL, Ramdall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  19. Mitchell PH, Barney RL (1918) The occurrence in Virginia of green-gilled oyster similar to those of Marennes. Bull US Bur Fish 35:137–149Google Scholar
  20. Moreau J (1970) Contribution aux recherches écologiques sur les claires à huîtres du bassin de Marennes-Oléron. Rev Trav Inst Pêches Marit 34:381–462Google Scholar
  21. Mouget JL, Rosa P, Vachoux C, Tremblin G (2005). Enhancement of marennine production by blue light in Haslea ostrearia. J Appl Phycol 17:437–445CrossRefGoogle Scholar
  22. Nassiri Y, Robert JM, Rincé Y, Ginsburger-Vogel T (1998) The cytoplasmic fine structure of the diatom Haslea ostrearia (Bacillariophycae) in relation to marennine production. Phycologia 37(2):84–91CrossRefGoogle Scholar
  23. Neuville D, Daste PH (1972) Production de pigment bleu par la diatomée Navicula ostrearia (Gaillon) Bory maintenue en culture uni-algale sur un milieu synthétique carencé en azote nitrique. C R Acad Sci Paris 274:2030–2033Google Scholar
  24. Neuville D, Daste PH (1973) Sur la singularité de la production d'un pigment bleuvert par la diatomée Navicula ostrearia (Gaillon) Bory C R Acad Sci Paris 276(Série D):3469–3472Google Scholar
  25. Neuville D, Daste PH (1978) Recherches sur le déterminisme de la production de marennine par la diatomée marine Navicula ostrearia (Gaillon) Bory en culture in vitro. Rev Gen Bot 85:255–303Google Scholar
  26. Perkampus HH (1992) UV-VIS spectroscopy and its applications. In: Grinter HC (Trans), Threlfall TL (Trans & ed) Investigation of equilibria. Springer-Verlag (Berlin Heidelberg, Newyork) pp 131–164, ISBN: 0-387-55421-1 (NY) 0-3-540-55421-1 (Berlin)Google Scholar
  27. Porter LJ (1993) The Flavonoids: advances in research since 1986. In: Harborne, JB 1994 (ed), Flavans and proanthocyanidins, pp 23–55, ISBN: 0-412-48070-0Google Scholar
  28. Porter LJ, Hirstch LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphidin. Phytochem 25:223–230CrossRefGoogle Scholar
  29. Pouvreau JB, Morançais M, Massé G, Rosa P, Robert JM, Fleurence JL, Pondaven P (2006) Purification of the blue-green pigment “marennine” from the benthic diatom Haslea ostrearia. J Appl Phycol (in press)Google Scholar
  30. Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content of Sorghum grain. J Agric Food Chem 25:1268–1273CrossRefGoogle Scholar
  31. Provasoli L (1968) Media and prospect for the cultivation of marine algae. In: Watanabe and Hattori (eds), Proceedings of the culture and collection of algae. USA, Japan Conf Hakone J Plant Physiol pp 63–65Google Scholar
  32. Puységur H (1880) Notice sur la cause du verdissement des huîtres. Rev Mar Colon 64:248–256Google Scholar
  33. Ranson G (1927) L'absorption de matières organiques disoutes par la surface extérieure du corps chez les animaux aquatiques. Ann Inst Ocean 4:49–174Google Scholar
  34. Ranson G (1937) Le verdissement des huîtres. Sciences 8:13–24Google Scholar
  35. Robert JM (1975) Le verdissement des huîtres dans les claires de la baie de Bourgneuf. Rev Trav Inst Pêches Marit 37: 363–368Google Scholar
  36. Robert JM, Hallet JN (1981) Absorption spectrum in vivo of the blue pigment “marennine” of the pennate diatom Navicula ostrearia Bory. J Exp Bot 32:341–345Google Scholar
  37. Robert JM (1983) Fertilité des claires ostréicoles et verdissement: utilisation de l'azote par les diatomées dominantes. PhD Thesis. University of Nantes. NantesGoogle Scholar
  38. Robert JM, Morançais M, Pradier E, Mouget JL, Tremblin G (2002) Extraction and quantitative analysis of the blue-green pigment “marennine” synthesized by the diatom Haslea ostrearia. J Appl Phycol 14:299–305CrossRefGoogle Scholar
  39. Rossignol N, Vandanjon L, Jaouen P, Quéméneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltratioin and ultrafiltration. Aquat Eng 20:191–208CrossRefGoogle Scholar
  40. Schubert H, Tremblin G, Robert JM, Sagert S et Rincé Y (1995) In vivo fluorescence measurement of photosynthesis of Haslea ostrearia Simonsen in relation to marennine content. Diatom Res 10:341–349Google Scholar
  41. Simonsen R (1974) The diatom plankton of the Indian Ocean expedition of R/V Meteor 1964–1965. Forsch.-Ergebnisse Reihe D 19:1–107Google Scholar
  42. Tremblin G, Robert JM (1996) Comportement photosynthétique de Haslea ostrearia en relation avec sa pigmentation bleue. C R Acad Sci Paris 319:933–944Google Scholar
  43. Tremblin G, Cannuel R, Mouget JL, Rech M, Robert JM (2000) Change in light quality due to a blue-green pigment, marennine, released in oyster-ponds: effect on growth and photosynthesis in two diatoms, Haslea ostrearia and Skeletonema costatum. J Appl Phycol 12:557–566CrossRefGoogle Scholar
  44. Tremblin G, Robert JM (2001) Carbon fixation by the peculiar marine diatom Haslea ostrearia. Photosynthetica 39:215–220CrossRefGoogle Scholar
  45. Vandanjon L (1997) Etude d'un procédé de valorisation d'une microalgue marine: concentration et purification par techniques à membranes d'un pigment naturel produit par la diatomée Haslea ostrearia. PhD Thesis, University of Nantes, Nantes.Google Scholar
  46. Vandanjon L, Jaouen P, Rossignol N, Quéméneur F, Robert JM (1999) Concentration and desalting by membrane processes of a natural pigment produced by the marine diatom Haslea ostrearia Simonsen. J Biotechnol 70:393–402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jean-Bernard Pouvreau
    • 1
  • Michèle Morançais
    • 1
  • Fabrice Fleury
    • 2
  • Philippe Rosa
    • 1
  • Laurent Thion
    • 3
  • Blanche Cahingt
    • 4
  • Franck Zal
    • 3
  • Joël Fleurence
    • 1
  • Pierre Pondaven
    • 1
    Email author
  1. 1.EMI, EA2663, ISOMer-UFR SciencesUniversité de Nantes, Nantes Atlantique UniversitésBrittanyFrance
  2. 2.BBB, CNRS UMR 6204, UFR SciencesUniversité de Nantes, Nantes Atlantique UniversitésBrittanyFrance
  3. 3.Station Biologique de RoscoffPlateforme de Séquençage et de Génotypage de Ouest GénopôleRoscoff CedexFrance
  4. 4.Laboratoire de Physique Subatomique et des Technologies Associées, UMR 6457, Ecole des Mines de NantesIN2P3 CNRS/Université de NantesNantes CedexFrance

Personalised recommendations