Journal of Applied Phycology

, Volume 18, Issue 3–5, pp 505–519 | Cite as

Long Term Variability in the Structure of Kelp Communities in Northern Chile and the 1997–98 ENSO

  • Julio A. Vásquez
  • J. M. Alonso Vega
  • Alejandro H. Buschmann
Article

Abstract

This is the first study on the south eastern Pacific coast of South America which details long term, interannual variability in the structure of subtidal rocky-bottom kelp-dominated communities before, during, and after the El Niño Southern Oscillation (ENSO) event of 1997–1998 in northern Chile (23S). The temporal patterns of the main components of these ecosystems, which included Macrocystisintegrifolia, Lessonia trabeculata, echinoids and asteroids, were evaluated seasonally between 1996 and 2004. M. integrifolia demonstrated high interannual variability in temporal patterns of abundance. The 1997–1998 ENSO did not significantly modify the temporal patterns of Macrocystis, although local extinction of M. integrifolia beds occurred during negative thermal anomalies in 1999–2000 (La Niña event), facilitating the establishment of urchin dominated “barren grounds”. The abundance of Lessonia trabeculata showed little temporal variability, and this species dominated the deeper regions of the kelp assemblage (8–13 m depth).

The structure of the kelp communities in the study area is regulated by a trophic cascade which modulates alternation between kelp dominated areas and sea urchin barrens. In this context, frequent and intense upwelling of cold water high in nutrients favors the establishment and persistence of kelp assemblages. During ENSO, coastal upwellings can mitigate superficial warming of coastal water and increase the nutrient concentration in the water column. Superficial warming during the 1997–1998 ENSO induced spawning by different species of echinoderms, which resulted in major recruitment of these species during 1999. Top-down events, such as the decrease in densities of the asteroids after the 1997–1998 ENSO event, favored increases in densities of benthic grazers, which caused significant decreases in abundance of M. integrifolia. The re-establishment of the adult fraction of the carnivore (starfish) guild coincided with a decrease in the density of sea urchins and thus re-establishment of the kelp. In the temperate south eastern Pacific, oceanographic events, which act on different spatial-temporal scales, trigger trophic cascades that act at local levels, producing interannual variability in the structure of kelp communities. On the other hand, considering the high macroinvertebrate diversity associated with kelp assemblages, the transitions between kelp-dominated areas and sea urchin barrens do not appear to significantly affect the biodiversity of these assemblages of benthic invertebrates.

Key words

Lessonia Macrocystis southern hemisphere subtidal rocky shore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buschmann A, Garía C, Espinoza R, Filún L, Vásquez JA (2003) Sea urchins (Loxechinus albus) and kelp (Macrocystis pyrifera) in protected areas in southern Chile. In Lawrence J (ed.), Sea Urchins: Fisheries and Ecology. Proceeding of the International Conference on Sea-Urchin Fisheries and Aquaculture 2003: 120–130.Google Scholar
  2. Buschmann A, Vásquez JA, Osorio P, Reyes E, Filun L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Marine Biology 145: 849–862.Google Scholar
  3. Camus PA (2001) Biogeografía marina de Chile continental. Revista Chilena de Historia Natural 74: 587–617.Google Scholar
  4. Contreras S, Castilla JC (1987) Feeding behavior and morphological adaptations in two sympatric sea urchins species in central Chile. Marine Ecology Progress Series 38: 217–224.Google Scholar
  5. Dayton PK (1985) The structure and regulation of some South American kelp communities. Ecological Monographs 55: 447–468.CrossRefGoogle Scholar
  6. Dayton PK, Rosenthal RJ, Mahen LC, Antezana T (1977) Population structure and foraging biology of the predaceous Chilean asteroid Meyenaster gelatinosus and the scape biology of its prey. Marine Biology 39: 361–370.CrossRefGoogle Scholar
  7. Dayton PK, Tegner MJ, Parnell PE, Edwards PB (1992) Temporal and spatial patterns of disturbance and recovery in kelp forest community. Ecological Monographs 62: 421–445.CrossRefGoogle Scholar
  8. Dayton PK, Tegner MJ, Edwards PB, Riser KL (1998) Slinding, ghost, and reduced expectations in kelp forest communities. Ecological Applications 8: 309–322.CrossRefGoogle Scholar
  9. Dayton PK, Tegner MJ, Edwards PB, Riser KL (1999) Temporal and spatial of kelp demography: The role of oceanographic climate. Ecological Monographs 69 (2): 219–250.CrossRefGoogle Scholar
  10. Ebert TA, Rusell MP (1988) Latitudinal variation in size structure of the west coast purple sea urchins: A correlation with headlands. Limnology and Oceanography 33: 286–294.CrossRefGoogle Scholar
  11. Edwards MS (2004) Estimating scale-dependency in disturbance impacts: El Niños and giant kelp forests in the northeast Pacific. Oecologia 138: 436–447.PubMedCrossRefGoogle Scholar
  12. Estes JA, Danner EM, Doak DF, Konar B, Springer AM, Steinberg PD, Tinker MT, Williams TM (2004) Complex trophic interactions in kelp forest ecosystems. Bulletin of Marine Science 74: 621–638.Google Scholar
  13. Fernandez E, Cordova C, Tarazona J (1999) Condiciones del bosque submareal de Lessonia trabeculata en la isla Independencia durante el evento El Niño 1997–1998. Revista Peruana de Biología, Volumen Extraordinario 47–59.Google Scholar
  14. Fielder PC (2002) Environmental changes in the eastern tropical Pacific Ocean: Review of ENSO and decadal variability. Marine Ecology Progress Series 244: 265–283.Google Scholar
  15. Glynn PW (1988) El Niño-Southern Oscillation 1982–1983: Nearshore population, community, and ecosystem responses. Annual Review of Ecology and Systematic 19: 309–345.Google Scholar
  16. Godoy NE (2000) Macrocystis integrifolia (Laminariales, Phaeophyta) en el norte de Chile: Distribución espacial y fauna asociada. Tesis para optar al Titulo de Biólogo Marino. Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo: 58 pp.Google Scholar
  17. Graham MH (2004) Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7: 341–357.CrossRefGoogle Scholar
  18. Graham MH, Harrold C, Lisin S, Light K, Watanabe JM, Foster MS (1997) Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Marine Ecology Progress Series 148: 269–279.Google Scholar
  19. Halpin PA, Strub PT, Peterson WT, Baumgartner TR (2004) An overview of interactions among oceanography, marine ecosystems, climatic and human disruptions along the eastern margins of the Pacific Ocean. Revista Chilena de Historia Natural 77: 371–410.Google Scholar
  20. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69: 373–386.CrossRefGoogle Scholar
  21. Ladah LB, Zertuche-González JA, Hernández-Carmona G (1999) Giant kelp (Macrocystis pyrifera, Pheophyceae), recruitment nears its southern limit in Baja California after mass disappearance during ENSO 1997–1998. Journal of Phycology 35: 1106–1112.CrossRefGoogle Scholar
  22. Lagos NA, Barría ID, Paolini P (2002) Upwelling ecosystem of northern Chile: Integrating benthic ecology and coastal oceanography through remote sensing. In Castilla JC, Largier JL (eds.), The Oceanography and Ecology of the Nearshore and Bays in Chile, Ediciones Universidad Católica de Chile, Santiago, Chile: 117–141.Google Scholar
  23. Lancelloti D, Vásquez JA (1999) Biogeographical patterns of benthic invertebrates in the southeastern Pacific litoral. Journal of Biogeography 26: 1001–1006.CrossRefGoogle Scholar
  24. Lancelotti D, Vásquez JA (2000) Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: Contribución para la conservación marina. Revista Chilena de Historia Natural 73: 99–129.CrossRefGoogle Scholar
  25. Lawrence JM (1975) On the relationships between marine plants and sea urchins. Oceanography and Marine Biology Annual Review 13: 213–286.Google Scholar
  26. Lawrence JM, Vásquez JA (1996) The effect of subletal predation on the biology of echinoderms. Oceanologica Acta 19: 1–10.Google Scholar
  27. Lleellish J, Fernández E, Hooker Y (2001) Disturbancia del bosque submareal de Macrocystis pyrifera durante El Niño 1997–1998 en la Bahía de Pucusana. In Alveal K, Antezana T (eds.), Sustentabilidad de la Biodiversidad. Un Problema Actual: Bases Científico Técnicas, Teorizaciones y Proyecciones. Universidad de Concepción, Chile, 331–350.Google Scholar
  28. Martínez EA, Cardenas L, Pinto R (2003) Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens 20 years after El Niño 1982–83. Journal of Phycology 39: 504–508.CrossRefGoogle Scholar
  29. Medina M, Araya M, Vega C (2004) Alimentación y relaciones tróficas de peces costeros de la zona norte de Chile. Investigaciones Marinas (Chile) 32: 33–47.Google Scholar
  30. Navarrete SA, Broitman B, Wieters EA, Finke GR, Venegas RM, Sotomayor A (2002) Recruitment of intertidal invertebrates in the southeast Pacific: Interannual variability and the 1997–1998 El Niño. Limnology and Oceanography 47: 791–802.Google Scholar
  31. Rodríguez SR, Ojeda FP (1993) Distribution patterns of Tetrapygus niger (Echinodermata: Echinoidea) off the central Chilean coast. Marine Ecology Progress Series 101: 157–162.Google Scholar
  32. Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research, W. H. Freeman & Company, New York, 859 pp.Google Scholar
  33. Soto R (1985) Efectos del fenomeno del El Niño 1982-83, en ecosistemas de la I Región. Investigaciones Pesqueras (Chile) 32: 199–206.Google Scholar
  34. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environmental Conservation 29: 436–459.CrossRefGoogle Scholar
  35. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chang K, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: The North Atlanthic Oscillation, El Niño southern Oscillation and beyond. Proceeding of the Royal Society Biological Sciences 270: 2087–2096.CrossRefGoogle Scholar
  36. SYSTAT (1992) Statistics. Version 8.0 (ed.) SYSTAT Inc. Evanston. IL.Google Scholar
  37. Takesue RK, van Geen A, Carriquiry JD, Ortiz E, Gonidez-Orta L, Granados I, Saldivar M, Ortlieb L, Guzman N, Castilla JC, Varas M, Salamanca M, Figueroa C (2004) Influence of coastal upwelling and ENSO on nearshore water along Baja California and Chile: Shore-based monitoring during 1997–2000. Journal of Geophysical Research 109: C03009, doi: 10.1029/2003JC001856.Google Scholar
  38. Tala F, Edding M, Vasquez JA (2004) Aspect of the reproductive phenology of Lessonia trabeculata (Laminariales: Phaeophyceae) from three populations in northern Chile. New Zealand Journal of Marine and Freshwater Research 38: 255–266.CrossRefGoogle Scholar
  39. Tegner MJ, Dayton PK (1987) El Niño effects on southern California kelp forest communities. Advances in Ecological Research 17: 243–274.CrossRefGoogle Scholar
  40. Tegner MJ, Dayton PK (1991) Sea urchins, El Niño, and the long-term stability of southern California kelp forest communities. Marine Ecology Progress Series 77: 49–63.Google Scholar
  41. Tegner MJ, Dayton PK, Edwards PB, Riser KL (1997) Large scale, low frequency oceanographic effects on the kelp forest succession: A tale of two cohorts. Marine Ecology Progress Series 146: 117–134.Google Scholar
  42. Tokeshi M, Romero L (1995) Quantitative analysis of foraging behavior in a field population of the South American sun-star Heliaster helianthus. Marine Biology 122: 297–303.Google Scholar
  43. Tomicic JJ (1985) Efectos del fenómeno del El Niño 1982-83, en las comunidades litorales de la Peninsula de Mejillones. Investigaciones Pesqueras (Chile) 32: 209–213.Google Scholar
  44. Vásquez JA (1992) Lessonia trabeculata, a subtidal bottom kelp in northern Chile: A case study for a structural and geographical comparisons. In Seeliger U (ed.), Coastal Plants of Latin America, Academics Press, San Diego: 77–89.Google Scholar
  45. Vásquez JA, Buschmann AH (1997) Herbivore-kelp interactions in Chilean subtidal communities: A review. Revista Chilena de Historia Natural 70: 41–52.Google Scholar
  46. Vásquez JA, Vega JMA (2004) El Niño 1997–1998 en el norte de Chile: Efectos en la estructura y en la organización de comunidades submareales dominadas por algas pardas. In Avaria S, Carrasco J, Rutland J, Yañez E (eds.), El Niño-La Niña 1997-2000 y sus efectos en Chile Comité Oceanográfico Nacional, Chile, 119–135.Google Scholar
  47. Vásquez JA, Camus PA, Ojeda FP (1998) Diversidad estructura y funcionamiento de ecosistemas costeros rocosos del norte de Chile. Revista Chilena de Historia Natural 71: 479–499.Google Scholar
  48. Vásquez JA, Véliz D, Pardo LM (2001a) Vida bajo las grandes algas pardas. In Alveal K, Antezana T (eds.), Sustentabilidad de la Biodiversidad. Un Problema Actual, Bases Científico Técnicas, Teorizaciones y Perspectivas, Ediciones Universidad de Concepción, Concepción. Chile, 293–308.Google Scholar
  49. Vásquez JA, Fonck E, Vega JMA (2001b) Diversidad, abundancia y variabilidad temporal de ensambles de macroalgas del submareal rocoso del norte de Chile. In Alveal K, Antezana T (eds.), Sustentabilidad de la Biodiversidad. Un Problema Actual, Bases Científico Técnicas, Teorizaciones y Perspectivas, Ediciones Universidad de Concepción, Concepción, Chile, 615–634.Google Scholar
  50. Vega JMA, Vásquez JA, Buschmann A (2005) Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of northern Chile: Interannual variability and El Niño 1997–98. Revista Chilena de Historia Natural 78: in press.Google Scholar
  51. Viviani C (1978) Predación interespecifica, canibalismo y autotomía como mecanismos de escape en las especies de Asteroidea (Echinodermata) en el litoral del Desierto del norte grande de Chile. Report. Laboratorio de Ecología Marina. Universidad del Norte, Iquique. 116 pp.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Julio A. Vásquez
    • 1
    • 2
  • J. M. Alonso Vega
    • 1
    • 2
  • Alejandro H. Buschmann
    • 3
  1. 1.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  2. 2.Centro de Estudios Avanzados de Zonas Aridas. CEAZACoquimboChile
  3. 3.I-MAR, Universidad de Los LagosPuerto MonttChile

Personalised recommendations