Advertisement

Journal of Applied Phycology

, Volume 18, Issue 1, pp 9–14 | Cite as

Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity

  • Wenjun Mao
  • Xiaoxue Zang
  • Yi Li
  • Huijuan Zhang
Article

Abstract

Sulfated polysaccharides from the green algae Ulva conglobata were isolated and prepared by extraction in hot water, precipitation with ethanol and purification by ion-exchange and size-exclusion column chromatography. The characterizations of the sulfated polysaccharides were defined, and containing 23.04–35.20% sulfate ester groups, 10.82–14.91% uronic acid and 3.82–4.51% protein. Gas chromatography analysis shows that the sulfated polysaccharides from Ulva conglobata are mainly consisted of rhamnose with variable contents of glucose and fucose, trace amounts of xylose, glactose and mannose. The anticoagulant properties of the sulfated polysaccharides were compared with those of heparin by studying the activated partial thromboplastin time using normal human plasma. The sulfated polysaccharide from Ulva conglobata collected in Qingdao, China is the most potent among the sulfated polysaccharides tested. The mechanism of anticoagulant activity mediated by the sulfated polysaccharides is due to the direct inhibition of thrombin and the potentiation of heparin cofactor II.

Key words

sulfated polysaccharide Ulva conglobata anticoagulant heparin cofactor II 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amornrut C, Toida T, Imanari T, Woo ER, Park H, Linhardt RJ (1999) A new sulfated β-galactan from clams with anti-HIV activity. Carbohydr. Res. 321: 121–127.CrossRefPubMedGoogle Scholar
  2. Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330–334.CrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7: 248–254.CrossRefGoogle Scholar
  4. Colliec S, Fischer AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J (1991) Anticoagulant properties of a fucoidan fraction. Thromb. Res. 64:143–154.CrossRefPubMedGoogle Scholar
  5. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorrimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  6. Harada N, Maeda M (1998) Chemical structure of antithrombin-active rhamnan sulfate from Monostrom nitidum. Biosci. Biotech. Biochem. 62: 1647–1652.CrossRefGoogle Scholar
  7. Haroun-Bouhedia F, Ellouali M, Sinquin C, Boisson-Videl C (2000) Relationship between sulfate groups and biological activities of fucans. Thromb. Res. 100: 453–459.PubMedCrossRefGoogle Scholar
  8. Hayakawa Y, Hayashi T, Hayashi K, Hayashi T, Ozawa T, Niiya K, Sakuragawa N (1996) Heparin cofactor II-dependent antithrombin activity of calcium spirulan. Blood Coagul. Fibrinolysis 7: 554–560.PubMedCrossRefGoogle Scholar
  9. Hayakawa Y, Hayashi T, Lee JB, Srisomporn P, Maeda M, Ozawa T, Sakuragawa N (2000) Inhibition of thrombin by sulfated polysaccharides isolated from green algae. 1543: 86–94Google Scholar
  10. Jurd KM, Rogers DJ, Blunden G, McLellan DS (1995) Anticoagulant properties of sulfated polysaccharides and a proteoglycan from Codium fragile ssp. atlanticum. J. Appl. Phycol. 7: 339-345CrossRefGoogle Scholar
  11. Lee JB, Yamagaki T, Maeda M, Nakanishi H (1998) Rhamnan sulfate from cell walls of Monostroma latissimum. Phytochem 48: 921–925.CrossRefGoogle Scholar
  12. Maeda M, Uehara T, Harada N, Sekiguchi M, Hiraoka A (1991) Heparinoid-active sulfated polysaccharides from Monostroma nitidum and their distribution in the Chlorophyta. 30: 3611–3614.Google Scholar
  13. Mao WJ, Li Y, Wu LG, Wang HQ, Zhang Y, Zang XX, Zhang HJ (2005) Chemical characterization and radioprotective effect of polysaccharide from Monostroma angicava (Chlorophyta). J. Appl. Phycol. 17: 349–354.CrossRefGoogle Scholar
  14. Mao WJ, Li BF, Gu QC, Fang YC, Xing HT (2004) Preliminary studies on the chemical characterization and antihyperlipidemic activity of polysaccharide from the brown alga Sargassum fusiforme. Hydrobiologia 512: 263–266.CrossRefGoogle Scholar
  15. Matsubara K, Matsuura Y, Hori K, Miyazawa K (2000) An anticoagulant proteoglycan from the marine green alga, Codium puniformis. J. Appl. Phycol. 12: 9–14.CrossRefGoogle Scholar
  16. McLellan DS, Jurd KM (1992) Anticoagulants from marine algae. Blood Coagul. Fibrinolysis 3: 69–77.PubMedCrossRefGoogle Scholar
  17. Melo FR, Pereira MS, Fogue D, Mourão PAS (2004) Antithrombin – mediated anticoagulant activity of sulfated polysaccharides. J. Biol. Chem. 279: 20824–20835.CrossRefPubMedGoogle Scholar
  18. Mourâno PAS, Pereira MS, Pavao MSG, Mulloy B, Tollefsen DM, Mowinckel MC, Abildgaard U (1996) Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. J. Biol. Chem. 271: 23973–23984.CrossRefPubMedGoogle Scholar
  19. Pereira MS, Mulloy B, Mourão PAS (1999) Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J. Biol. Chem. 274: 7656–7667.CrossRefPubMedGoogle Scholar
  20. Rogers DJ, Jurd KM, Blunden G, Paoletti S, Zanetti F (1990) Anticoagulant activity of a proteoglycan in extracts of Codium fragile ssp. Atlanticum. J. Appl. Phycol. 2: 357-361CrossRefGoogle Scholar
  21. Therho TT, Hartiala K (1971) Method for determination of the sulfate content of glycosamino glycans. Anal. Biochem. 41: 471-476.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Wenjun Mao
    • 1
  • Xiaoxue Zang
    • 1
  • Yi Li
    • 2
  • Huijuan Zhang
    • 1
  1. 1.Institute of Marine Drugs and FoodsOcean University of ChinaQingdaoP.R China
  2. 2.401 Hospital of PLAQingdaoP.R. China

Personalised recommendations