Journal of Applied Phycology

, Volume 17, Issue 4, pp 339–347 | Cite as

Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana

  • Rainer-B. VolkEmail author


Culture medium extracts obtained from 115 culture media of 35 different microalgae species were screened for the presence of algicidal compounds, in particular for compounds which are cytotoxic to Arthrospira (Spirulina) laxissima. In agar plate diffusion tests and in a test system combining thin layer chromatography (TLC) with the use of an aqueous suspension of living A. laxissima cells as spray reagent, 14 microalgae species were found with cytotoxic activity of different intensity to A. laxissima. In a so-called TLC plate diffusion test, using A. laxissima and other microalgae as test organisms, the culture medium extracts of Nodularia harveyana and Nostoc insulare possessed the highest strength and range of algicidal activity. The algicidal compound in the culture medium extracts of Nodularia harveyana was shown to be norharmane (9H-pyrido(3,4-b)indole), a known indole alkaloid. The main algicidal compound in culture medium extracts of Nostoc insulare was identified as 4,4′-dihydroxybiphenyl. The possible applicability of both compounds as therapeutics or as useful agents for removing cyanobacterial water blooms or for developing new antifouling systems is discussed.


agar plate diffusion test Arthrospira (Spirulina) laxissima 4,4′-dihydroxybiphenyl indole alkaloid microalgal culture medium extracts norharmane TLC plate diffusion test 



thin layer chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen JRF, Holmstedt BR (1980) The simple β-carboline alkaloids. Phytochem. 19: 1573–1582.CrossRefGoogle Scholar
  2. Bagchi SN, Palod A, Chauhan VS (1990) Algicidal properties of a bloom-forming blue-green alga, Oscillatoria sp. J. Basic Microbiol. 30: 21–29.Google Scholar
  3. Bhadury P, Wright PC (2004) Exploitation of marine algae: Biogenic compounds for potential antifouling applications. Planta 219: 561–578.CrossRefPubMedGoogle Scholar
  4. Bourke CA, Stevens GR, Carrigan MJ (1992) Locomotor effects in sheep of alkaloids identified in Australien Tribulus terrestris. Aust. Vet. J. 69(7): 163–165.PubMedGoogle Scholar
  5. Carmichael WW (1992) Cyanobacteria secondary metabolites – the cyanotoxins. J. appl. Bacteriol. 72: 445–459.PubMedGoogle Scholar
  6. Chiarugi A, Dello Sbarba P, Paccagnini A, Donnini S, Filippi S, Moroni F (2000) Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-gamma-activated macrophages. J. Leukoc. Biol. 68(2): 260–266.PubMedGoogle Scholar
  7. Connop BP, Kalisch BE, Boegman RJ, Jhamandas K, Beninger RJ (1995) Enhancement of 7-nitro indazole-induced inhibition of brain nitric oxide synthase by norharmane. Neurosci. Lett. 190: 69–72.CrossRefPubMedGoogle Scholar
  8. Cooper EJ, Hudson AL, Parker CA, Morgan NG (2003) Effects of beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur. J. Pharmacol. 482: 189–196.CrossRefPubMedGoogle Scholar
  9. Falch BS (1996) What remains of cyanobacteria? Pharm. i. u. Zeit 25(6): 311–319.Google Scholar
  10. Falch BS, KÖonig GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM, Bachmann H (1995) Biological activities of cyanobacteria: Evaluation of extracts and pure compounds. Planta Med. 61: 321–328.PubMedGoogle Scholar
  11. Fischer D (1996) Untersuchungen Üuber den Einfluss von ZÜuchtungsfaktoren auf die Bildung, Zusammensetzung und das rheologische Verhalten der Exopolysaccharide ausgewÄahlter Cyanobakterien. PhD Thesis, Christian-Albrechts-University Kiel, Germany.Google Scholar
  12. Fischer D, SchlÖosser UG, Pohl P (1997) Exopolysaccharide production by cyanobacteria grown in closed photo bioreactors and immobilized using white cotton towelling. J. appl. Phycol. 9: 205–213.CrossRefGoogle Scholar
  13. Flores E, Wolk CP (1986) Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch. Microbiol. 145: 215–219.CrossRefPubMedGoogle Scholar
  14. HÖorhammer L, Wagner H, Bittner G (1963) DÜunnschichtchroma- tographie von Anthrachinondrogen und ihren Zubereitungen. Pharm. Ztg. 108: 259–262.Google Scholar
  15. Inoue S, Okada K, Tanino H, Kakoi H, Goto T (1980) Trace characterization of the fluorescent substances of a dinoflagellate, Noctiluca miliaris. Chem. Lett.: 297–298.Google Scholar
  16. Jaki B, Heilmann J, Sticher O (2000) New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). J. Nat. Prod. 63: 1283–1285.CrossRefPubMedGoogle Scholar
  17. Jaki B, Zerbe O, Heilmann J, Sticher O (2001) Two novel cyclic peptides with antifungal activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195).). J. Nat. Prod. 63: 154–158.CrossRefGoogle Scholar
  18. Jander F (2001) Massenkultur von Mikroalgen mit pharmazeutisch nutzbaren Inhaltsstoffen unter Verwendung von CO2 und NaHCO3, gewonnen aus den Abgasen eines Blockheizkraftwerks. PhD Thesis, Christian-Albrechts-University Kiel, Germany.Google Scholar
  19. Kodani S, Imoto A, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. appl. Phycol. 14: 109–114.CrossRefGoogle Scholar
  20. Larsen LK, Moore RE, Patterson GML (1994) β-Carbolines from the blue-green alga Dichothrix baueriana. J. Nat. Prod. 57: 419–421.CrossRefPubMedGoogle Scholar
  21. Öordog V, Stirk WA, Lenobel R, Bancíiováa M, Strnad M, van Staden J, Szigeti J, Néemeth L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. appl. Phycol. 16: 309–314. -32pcCrossRefGoogle Scholar
  22. Patterson GML, Larsen LK, Moore RE (1994) Bioactive natural products from blue-green algae. J. appl. Phycol. 6: 151–157.Google Scholar
  23. Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J. appl. Phycol. 12: 543–547.CrossRefGoogle Scholar
  24. Pohl P, Kohlhase M, Krautwurst S, Baasch KH (1987) An inexpensive inorganic culture medium for the mass cultivation of freshwater microalgae. Phytochem. 26: 1657–1659.CrossRefGoogle Scholar
  25. Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. appl. Phycol. 6: 159–176.Google Scholar
  26. Schlegel I, Doan NT, de Chazal N, Smith GD (1998) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J. appl. Phycol. 10: 471–479.CrossRefGoogle Scholar
  27. SchlÖosser UG (1994) SAG-Sammlung von Algenkulturen at the University of GÖottingen. Bot. Acta 107: 113–186.Google Scholar
  28. Schulze C (2000) Gewinnung und Identifizierung von nutzbaren Verbindungen aus den NÄahrlÖosungen und Biomassen von Mikroalgen. PhD Thesis, Christian-Albrechts-University Kiel, Germany.Google Scholar
  29. Smith G, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J. appl. Phycol. 11: 337–344.CrossRefGoogle Scholar
  30. Totsuka Y, Hada N, Matsumoto K, Kawahara N, Murakami Y, Yokoyama Y, Sugimura T, Wakabayashi K (1998) Structural determination of a mutagenic aminophenylnorharman produced by the co-mutagen norharman with aniline. Carcinogenesis 19: 1995–2000.CrossRefPubMedGoogle Scholar
  31. Totsuka Y, Takamura-Enya T, Nishigaki R, Sugimura T, Wakabayashi K (2004) Mutagens formed from beta-carbolines with aromatic amines. J. Chromatogr. B 802: 135–141.CrossRefGoogle Scholar
  32. Volk R-B (1996) Kontrollierte Massenzucht von Mikroalgen unter zwei Gesichtspunkten: Zwei-Stufen-Kultivierung zur Steigerung der Carotinoid- und Phycobiliprotein-Produktion und Suche nach Wachstumsinhibitoren aus Mikroalgen-NÄahrlÖosungen. PhD Thesis, Christian-Albrechts-University Kiel, Germany.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Abteilung Pharmazeutische BiologieUniversität Kiel, Pharmazeutisches InstitutKielGermany

Personalised recommendations