Advertisement

Journal of Applied Phycology

, Volume 17, Issue 5, pp 371–377 | Cite as

Effect of temperature and irradiance on the uptake of ammonium and nitrate by Laurencia brongniartii (Rhodophyta, Ceramiales)

  • Gregory N. Nishihara
  • Ryuta Terada
  • Tadahide Noro
Article

Abstract

The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.

Key words

ammonium irradiance kinetics Laurencia brongniartii nitrate temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe T, Masuda M (1998) Laurencia japonensis sp. nov. (Ceramiales, Rhodophyta). Eur. J. Phycol. 33: 17–24.Google Scholar
  2. Abe T, Masuda M, Kawaguchi S, Kamura S (1998) Taxonomic notes on Laurencia brongniartii (Rhodomelaceae, Rhodophyta). Phycol. Res. 46: 231–237.Google Scholar
  3. Ahn O, Petrell RJ, Harrison PJ (1998) Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm. J. Appl. Phycol. 10: 333–340.Google Scholar
  4. American Water Works Association (1998a) Nitrogen (ammonia) (4500-NH3)/phenate method. In Clesceri LS, Greenberg AE, Eaton AD (eds), Standard Methods for the Examination of Water and Wastewater. Maryland Composition Co., Glen Burnie, Maryland, USA, pp. 4-108–4-109.Google Scholar
  5. American Water Works Association (1998b) Nitrogen (nitrate) (4500-NO3)/cadmium reduction method. In Clesceri LS, Greenberg AE, Eaton AD (eds), Standard Methods for the Examination of Water and Wastewater. Maryland Composition Co., Glen Burnie, Maryland, USA, pp. 4-117–4-119.Google Scholar
  6. American Water Works Association (1998c) Nitrogen (nitrite) (4500-NO2)/colorimetric method. In Clesceri LS, Greenberg AE, Eaton AD (eds), Standard Methods for the Examination of Water and Wastewater. Maryland Composition Co., Glen Burnie, Maryland, USA, pp. 4-112–4-114.Google Scholar
  7. Brumfitt W, Hamilton-Miller JMT (1990) The world-wide problem of methicillin-resistant Staphylococcus aureus. Drugs Und. Exp. Clin. Res. 16: 205–214.Google Scholar
  8. D'Elia CF, DeBoer JA (1978) Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J. Phycol. 14: 266–272.Google Scholar
  9. Erickson KL (1983) Constituents of Laurencia. In Sheuer PJ (ed), Marine Natural Products, Vol. 5. Academic Press, New York, pp. 131–257.Google Scholar
  10. Fenical W (1975) Halogenation in the Rhodophyta. A review. J. Phycol. 11: 245–259.Google Scholar
  11. Fenical W, Norris JN (1975) Chemotaxonomy in marine algae: Chemical separation of some Laurencia species (Rhodophyta) from the Gulf of California. J. Phycol. 11: 104–108.Google Scholar
  12. Fitzgerald GP, Nelson TC (1966) Extractive and enzymatic analyses for limiting or surplus phosphorus in algae. J. Phycol. 2: 32–37.Google Scholar
  13. Friedlander M, Dawes CJ (1985) In situ uptake kinetics of ammonium and phosphate and chemical composition of the red seaweed Gracilaria tikvahiae McLachlan (Rhodophyta). J. Phycol. 21: 448–453.Google Scholar
  14. Fujii MT, Cordeiro-Marino M (1996) Laurencia translucida sp. nov. (Ceramiales, Rhodophyta) form Brazil. Phycologia 35: 542– 549.Google Scholar
  15. Fujita RM (1985) The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J. Exp. Mar. Biol. Ecol. 92: 283–301.Google Scholar
  16. Graham LE, Wilcox LW (2000) Algae. Prentice Hall, New Jersey, 640 pp.Google Scholar
  17. Hackett HE (1974) Laurencia brongniartii (Rhodophyta–Rhodomelaceae) from Florida. Flor. Sci. 37: 50–52.Google Scholar
  18. Haines KC, Wheeler PA (1978) Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). J. Phycol. 14: 319– 324.Google Scholar
  19. Harada H, Noro T, Kamei Y (1996a) Cytotoxic spectra of selective antitumor extracts from marine algae extracts to several tumor cells lines. Mar. High. Biosci. Cntr. Rep. 4: 23–26.Google Scholar
  20. Harada H, Noro T, Kamei Y (1996b) Effect of in vitro selective antitumor active extracts from marine algae on proliferations of murine tumor L1210 and normal NIH-3T3 cells. Mar. High. Biosci. Cntr. Rep. 4: 27–31.Google Scholar
  21. Harada H, Noro T, Kamei Y (1997) Selective antitumor activity in vitro from marine algae from Japan coasts. Biol. Pharm. Bull. 20: 541–546.Google Scholar
  22. Harrison PJ, Parslow JS, Conway HL (1989) Determination of nutrient uptake kinetic parameters: A comparison of methods. Mar. Ecol. Prog. Ser. 52: 301–312.Google Scholar
  23. Horikawa M, Noro T, Kamei Y (1995) Screening of antibacterial activity from marine algae of Kyushu Island, Japan: II. Mar. High. Biosci. Cntr. Rep. 2: 43–48.Google Scholar
  24. Horikawa M, Noro T, Kamei Y (1999) In vitro anti-methicillin-resistant Staphylococcus aureus activity found in extracts of marine algae indigenous to the coastline of Japan. J. Antibiot. 52: 186–189.Google Scholar
  25. Kamei Y, Noro T, Yamaguchi Y (1995) Screening of antiviral activity from marine algae: I. Mar. High. Biosci. Cntr. Rep. 2: 49–56.Google Scholar
  26. Lembi CA, Waaland JR (1988) Algae and Human Affairs. Cambridge University Press, New York, 590 pp.Google Scholar
  27. McDermid KJ (1988) Section V. Laurencia (Rhodophyta, Rhodomelaceae) introduction. In Abbot IA (ed), Taxonomy of Economic Seaweeds with Reference to Some Pacific and Caribbean Species. La Jolla, California, Sea Grant College Program, Vol. 2, pp. 221–229.Google Scholar
  28. Nishihara GN, Mori Y, Terada R, Noro T (2004a) A simplified method to isolate and cultivate, Laurencia brongniartii (Rhodophyta, Ceramiales) from Kagoshima, Japan. Suisanzoshoku 52: 1–10.Google Scholar
  29. Nishihara GN, Mori Y, Terada R, Noro T (2004b) Habitat characteristics and seasonal growth of Laurencia brongniartii (Ceramiales, Rhodophyta) in Kagoshima, Southern Japan. Phycol. Res. 52: 30–37.Google Scholar
  30. Pratt R, Daniels TC, Gunnison JB, Kumler WD, Oneto JF, Strait LA (1944) Chlorellin, an antibacterial substance from Chlorella. Science 99: 351–352.Google Scholar
  31. Schwartz R, Hirsch C, Flor J, Baroni A, Socal G (1990) Pharmaceuticals from cultured algae. J. Ind. Microbiol. 5: 113–124.Google Scholar
  32. Saito Y (1967) Studies on Japanese species of Laurencia, with special reference to their comparative morphology. Mem. Fac. Fish. Hokkaido Univ. 15: 1–81.Google Scholar
  33. Saito Y, Takata A (1974) On Laurencia brongniartii from Japan. Jpn. J. Phycol. 22: 83–89.Google Scholar
  34. Shepherd SA, Womersley HBS (1970) The sublittoral ecology of West Island, South Australia: 1. Environmental features and the algal ecology. Trans. R. Soc. S. Aust. 94: 105–138.Google Scholar
  35. Shepherd SA, Womersley HBS (1971) Pearson Island Expedition 1969: 7. The subtidal ecology of benthic algae. Trans. R. Soc. S. Aust. 95: 155–167.Google Scholar
  36. Smit AJ (2002) Nitrogen uptake by Gracilaria gracilis (Rhodophyta): Adaptations to a temporally variable nitrogen environment. Bot. Mar. 45: 196–209.Google Scholar
  37. Topinka JA (1978) Nitrogen uptake by Fucus spiralis (Phaeophyceae). J. Phycol. 14: 247–247.Google Scholar
  38. Wheeler WN (1982) Nitrogen nutrition of Macrocystis. In Srivastava LM (ed), Synthetic Degradative Processes in Marine Macrophytes. Walter de Gruyter, Berlin, pp. 121–137.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Gregory N. Nishihara
    • 1
  • Ryuta Terada
    • 2
  • Tadahide Noro
    • 1
  1. 1.Education and Research Center for Marine Resources and Environment, Faculty of FisheriesKagoshima UniversityKagoshimaJapan
  2. 2.Laboratory of Aquatic Resource Science, Faculty of FisheriesKagoshima UniversityKagoshimaJapan

Personalised recommendations