Advertisement

Journal of Applied Phycology

, Volume 17, Issue 2, pp 161–170 | Cite as

Temporal alterations of Nannochloropsis salina (Eustigmatophyceae) grown under aqueous diesel fuel stress

  • Nagwa Gamal-EI Din MohammadyEmail author
  • Yean-Chang Chen
  • Abd-El-Ruhman Aly El-Mahdy
  • Rania Farag Mohammad
Article

Abstract

The influence of an aqueous extract of diesel fuel was tested on growth of the marine eustigmatophyte Nannochloropsis (Monallantus) salina Hibberd. An increase in the concentration of the pollutant led to a decrease in growth rate as measured by optical density, with maximum effect observed (33% of control) at 100% aqueous pollutant. Spectrophotometric examination of cell viability (using Evan’s blue dye) showed a significant negative effect of the diesel extract (p ≤ 0.05, r = −0.92). Infrared spectra showed a slight change in the absorbance of contaminated compared with controlled cells. Proteome analysis (sodium dodecyl sulfate polyacrylamide gel electrophoresis – “SDS-PAGE”) indicated that cell protein profiles depended on the pollutant concentration. Some of the resultant bands were characteristic to the pollutant concentration applied, indicating a distinct effect of the pollutant on the proteome structure. Iodine and toluidine blue dyes were applied using light microscopy to detect starch and mucilage, respectively. This indicated the presence of starch during all treatments, while the mucilage has been reduced. Transmission electron microscopy showed alterations to cell walls and membranes with different degrees of plasmolysis leading to a gradual increase in cell volume. However, the nucleus, the nucleolus and the pyrenoid remained unaffected. Similar results were obtained when the alga was cultured for 25 days in the 100% aqueous diesel extract indicating that long-term culture does not affect the degree of pollutant stress. Further, these cells recovered their normal appearance and characteristics within two days of being transferred to culture medium free of extract, indicating that N. salina shows a high tolerance to aqueous diesel fuel pollution.

Key Words

cell viability growth infrared analysis light microscopy mucilage Nannochloropsis salina proteome analysis stress transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal BL (1988) Basic Statistics. Wiley Eastern Limited, New Delhi, 748 pp.Google Scholar
  2. Ansari ZA, Saldanha MC, Rajkumar R (1997) Effects of petroleum hydrocarbons on the growth of microalga Iosocrysis sp. (Chrysophyta). Indian J. Mar. Sci. 26: 372–376.Google Scholar
  3. Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R, Svetlicic V, Zutic V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl. Environ. Microbiol. 65: 2041–2048.Google Scholar
  4. Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by halotolerant microalga Nannochloropsis salina. Biomass 12: 17–24.Google Scholar
  5. Boylan DB, Trip BW (1971) Determination of hydrocarbons in seawater extracts of crude oil fractions. Nature 230: 44–47.Google Scholar
  6. Chen YC (2003) Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. J. Appl. Phycol. 15: 439–444.Google Scholar
  7. Chrisman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulation for defense against oxidative stress and some heat shock proteins in Salmonella typhimuirum. Cell 41: 753–762.Google Scholar
  8. Crippen RW, Perrier JL (1974) The use of neutral red and Evan,s blue for live–dead determination of marine phytoplankton. Stain Technol. 49: 97–104.Google Scholar
  9. Czekanowski J (1913) Zarys method statystycznyck. E. Wendego, Warsow. Anthropol. Anz. 9: 227–249.Google Scholar
  10. Dennington VN, George HM, Wybron CHE (1975) The effect of oil on growth of fresh water phytoplankton. Environ. Pollut. 8: 233–237.Google Scholar
  11. Diez B, Alio-Pedros C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl. Environ. Microbiol. 67: 2942–2951.Google Scholar
  12. El-Ghamery AA, Mansour MM, Abou El-Yousser MA (2002) Effect of some heavy metals on mitotic activity, nucleic acids content and protein banding patterns in meristematic roots of Nigella sativa and Triticum aestivum. Egypt. J. Biotechnol. 11: 266–281.Google Scholar
  13. Falkowski PG (1992) Molecular ecology of phytoplankton photosynthesis. In Falkowski PG, Woodhead AD (eds), Primary Productivity and Biochemical Cycles in the Sea. Plenum Press, New York, pp. 47–67.Google Scholar
  14. Franklin LA, Krabs G, Kuhlenkamp R (2001) Blue light and UV-radiation control the synthesis of mycosprine-like amino acids in Chondrus crispus (Florideophyceae). J. Phycol. 37: 257–270.Google Scholar
  15. Gallagher JC (1984) Patterns of cell viability in the diatoms, Skeletonema costatum in bach culture and in natural populations. Estuaries 7: 98–101.Google Scholar
  16. Gentile MP, Blanch HW (2001) Physiology and xanthophyll cycle activity of Nannochloropsis gaditana. Biotechnol. Bioeng. 5:1–12.Google Scholar
  17. Gitelson AA, Grits YA, Etzion D, Ning Z, Richmond A (2000) Optical properties of Nannochloropsis sp. and their application to remote estimation of cell mass. Biotechnol. Bioeng. 5: 516–525.Google Scholar
  18. Gonen-Zurgil Y, Carmeli-Schwartz Y, Sukenik A (1996) Selective effect of the herbicide DCMU on unicellular algae – a potential tool to maintain monoalgal mass culture of Nannochloropsis. J. Appl. Phycol. 8: 415–419.Google Scholar
  19. Hedrick DB, Nivens DE, Stafford C, White DC (1991) Rapid differentiation of archaebacteria from eubacteria by diffuse reflectance fourier-transform IR spectroscopic analysis of lipid preparations. J. Microbiol. Methods 13: 67–73.Google Scholar
  20. Henrion R, Henrion G, Bohme M, Behrendt H (1997) Three-way principal components analysis for fluorescence spectroscopic classification of algae species. Fres. J. Anal. Chem. 357: 522–528.Google Scholar
  21. Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). J. Linn. Soc. Bot. 82: 93–119.Google Scholar
  22. Hieks GR, Rayle DL, Lomax TL (1989) The Diageotropica mutant of tomato lacks high specific activity auxin binding sites. Science 245: 52–54.Google Scholar
  23. Hommel R (1990) Formation and physiological role of biosurfacants produced hydrocarbon-utilizing microorganisms. Biosurfactats in hydrocarbon utilization. Biodegradation 1: 107–119.Google Scholar
  24. Hutchinson GE (1967) A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. John Wiley and Sons, New York, 1115 pp.Google Scholar
  25. Kansiz M, Heraud P, Wood B, Burden F, Beardall J, McNaughton D (1999) Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry 52: 407–417.Google Scholar
  26. Krauss PB, Hutchinson TC (1975) The effect of water-soluble petroleum components on the growth of Chlorella vulgaris. Beijerinck. Environ. Pollut. 9: 157–174.Google Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–686.Google Scholar
  28. Lai B, Khanna S (1996) Mineralization of 14C octacosane by Acinetobacter calcoaceticus S30. Can. J. Microbiol. 42: 1225–1231.Google Scholar
  29. Lobban CS, Chapman DJ, Kremer BP (1988) Experimental phycology. In Harrison PJ (ed), Phytoplankton Stains. Cambridge University Press, New York, pp. 23–26.Google Scholar
  30. Lubián LM (1982a) Nannochloropsis gaditana sp. nov., una nueva Eustigmatophyceae marina. Lazaroa 4: 287–293.Google Scholar
  31. Lubián LM (1982b) Ultrastructura y pigmentos de algunas Chlorophyceae y Eustigmatophyceae planctonicas de morfologia similar. Collectanea Bot. 13: 873–880.Google Scholar
  32. Lubián LM, Montero O, Moreno-Garrido I, Huertas E, Sobrino C, Gonzalez-Delvalle M, Pares G (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol. 12: 249–255.Google Scholar
  33. Moreno-Garrido I, Blasco J, Gonzalez-Delvalle M, Lubián LM (1998) Differences in copper accumulation by the marine microalga Nannochloropsis gaditana, submitted to two different thermal treatments. Ecotoxicol. Environ. Rest. 1: 43–47.Google Scholar
  34. Mullar HP, Gottschalk W (1973) Quantitative and qualitative situation of seed protein in mutants and recombination of Pisum sativum. In Nuclear Techniques for Seed Protein Improvement. IAEA, Vienna, pp. 235–253.Google Scholar
  35. Nechev JT, Khotimchenko SV, Ivanova AP, Stefanov KL, Dimitrova-Konakliva SD, Andreev S, Popov SS (2002) Effect of diesel fuel pollution on the lipid composition of some wide-spread Black Sea algae and invertebrates. Z. Naturforsch. 57(c): 339–343.Google Scholar
  36. Nelson WH (1991) Modern Techniques for Rapid Microbiological Analysis. VCH Publishers, New York.Google Scholar
  37. Piehler MF, Winkelmann V, Twomey LJ (2003) Impact of diesel fuel exposure on the microphytobenthic community of an intertidal sand flat. J. Exp. Mar. Biol. Ecol. 297: 219–237.Google Scholar
  38. Piehler MF, Swistak JG, Pinckney JL, Paerl HW (1997) Sub-lethal effects of coastal petroleum pollution on Spartina alterniflora stem epiphytes. Chemosphere 35: 2665–2674.Google Scholar
  39. Reynolds T (1987) Comparative effects of alicyclic compounds and quinines on inhibition of lettuce fruit germination. Ann. Bot. 60: 215–223.Google Scholar
  40. Rocha JM, Garcia JE, Henriques MH (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol. Eng. 20: 237–242.Google Scholar
  41. Sandgren CD (1988) The ecology of chrysophyte flagellates: Their growth and perennation strategies as freshwater phytoplankton. In Sandgren CD (ed), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge, UK, 442 pp.Google Scholar
  42. Shepherd VA, Beilby MJ, Hesiop D (1999) Ecophysiology of hypotonic response in the salt-tolerant alga Lamprothamnium papulosum. Plant Cell Environ. 22: 333–364.Google Scholar
  43. Smith M, Croft S (1991) Embedding and thin section preparation. In Harris IR (ed), Electron Microscopy in Biology. IRL Press, Oxford, New York, Tokyo, pp. 17–37.Google Scholar
  44. Soto C, Hutchinson TC, Hellebust JA, Sheath RG (1979a) The effect of crude oil on the morphology of the green flagellated Chlamydomonas angulosa. Can. J. Bot. 57: 2717–2728.Google Scholar
  45. Soto C, Hellebust JA, Hutchinson TC, Sheath RG (1979b) The effect of hydrocarbon naphthalene on the morphology of the green flagellated Chlamydomonas angulosa. Can. J. Bot. 57: 2729–2739.Google Scholar
  46. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31–43.Google Scholar
  47. Tongpim S, Pickard MA (1996) Growth of Rhodococcus S1 on anthracene. Can. J. Microbiol. 42: 289–294.Google Scholar
  48. Trainor FR, Rowland HL, Lylis JC, Winter PA, Bonanomi PL (1971) Some examples of polymorphism in algae. Phycologia 10: 113–119.Google Scholar
  49. Tukaj Z, Bohdanowicz J (1995) Diesel–fuel oil induced morphological changes in some Scenedesmus species (Chlorococcales). Algol. Stud. 77: 83–94.Google Scholar
  50. Véron B, Dauguet JC, Billard C (1998) Sterolic biomarkers in marine phytoplankton. II. Free and conjugated sterols of seven species used in mariculture. J. Phycol. 34: 273–279.Google Scholar
  51. Wetherell DF (1961) Culture of freshwater algae in enriched natural sea water. Physiol. Plant. 14: 1–6.Google Scholar
  52. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64(7): 2578–2584.Google Scholar
  53. Williams DH, Fleming I (1996) Spectroscopic methods in organic chemistry, 5th edn. Mc Graw-Hill International Ltd., London.Google Scholar
  54. Wodzinski RS, Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl. Microbiol. 27: 1081–1084.Google Scholar
  55. Wong PTT, Wong RH, Caputo TA, Rigas B (1991) Proc. Natl. Acad. Sci. 88: 10988.Google Scholar
  56. Wu Q, Nelson WH, Hargraves P, Zhang J, Brown CW, Seelenbinder JA (1998) Differentiation of algae clones on the basis of resonance Raman spectra exited by visible light. Anal. Chem. 70: 1782–1787.Google Scholar
  57. Yu L, Yu-Xiang J, Shi-Hua S (2004) Advances in plant proteomics. Acta Phytoecol. Sin. 28: 114–125.Google Scholar
  58. Zittelli GC, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J. Biotechnol. 70: 299–312.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Nagwa Gamal-EI Din Mohammady
    • 1
    Email author
  • Yean-Chang Chen
    • 2
  • Abd-El-Ruhman Aly El-Mahdy
    • 3
  • Rania Farag Mohammad
    • 4
  1. 1.Department of Botany, Faculty of Science, Muharram BeckAlexandria UniversityAlexandriaEgypt
  2. 2.Department of AquacultureNational Taiwan Ocean UniversityKeelungTaiwan
  3. 3.Department of Botany, Faculty of AgricultureNile Valley UniversityAtbaraSudan
  4. 4.Department of Biology, Faculty of ScienceOmar El-Mokhtar UniversityEl BaidaaLibya

Personalised recommendations