Wave processes in nanostructures formed by nanotube arrays or nanosize crystals

  • V. A. EremeyevEmail author
  • E. A. Ivanova
  • D. A. Indeitsev


Basic parameters of wave processes in structures formed by arrays of parallel nanosize crystals or nanotubes grown in the direction normal to the substrate are obtained. This problem is considered in modeling the behavior of nanoelectromechanical systems, for instance, sensors that utilize such structures. The parameters obtained can also be used to determine the effective elastic characteristics of nanoobjects forming this structure.

Key words

thin-walled structures oscillations of elastic bodies nanostructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bhushan (ed.), Springer Handbook of Nanotechnology, Springer-Verlag, Berlin (2007).Google Scholar
  2. 2.
    M. H. Huang, S. Mao, H. Feick, et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, 292, No. 5523, 1897–1899 (2001).CrossRefADSGoogle Scholar
  3. 3.
    K. B. Lee, E. Y. Kim, C. A. Mirkin, and S. M. Wolinsky, “The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma,” Nano Lett., 4, No. 10, 1869–1872 (2004).CrossRefADSGoogle Scholar
  4. 4.
    G. K. Mor, O. K. Varghese, M. Paulose, et al., “A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications,” Solar Energy Mater. Solar Cells, 90, No. 14, 2011–2075 (2006).CrossRefGoogle Scholar
  5. 5.
    V. K. Varadan and V. V. Varadan, “Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems,” Smart Mater. Struct., 9, No. 6, 953–972 (2000).CrossRefADSGoogle Scholar
  6. 6.
    L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes,” Chem. Mater., 13, No. 12, 4395–4398 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Yu. Gutkin and I. A. Ovid’ko, Defects and Mechanisms of Plasticity in Nanostructural and Non-Crystalline Materials [in Russian], Yanus, St. Petersburg (2003).Google Scholar
  8. 8.
    M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformable Nanostructures [in Russian], Vols. 1 and 2, Yanus, St. Petersburg (2003–2005).Google Scholar
  9. 9.
    A. M. Krivtsov and N. F. Morozov, “Anomalies of mechanical characteristics of nanosize objects,” Dokl Ross. Akad. Nauk, 381, No. 3, 345–347 (2001).Google Scholar
  10. 10.
    W. A. Goddard, D.W. Brenner, S. E. Lyshevski, and G. J. Iafrate (eds.), Handbook of Nanoscience, Engineering, and Technology, CRC Press, Boca Raton (2003).Google Scholar
  11. 11.
    V. A. Eremeyev, E. A. Ivanova, N. F. Morozova, and A. N. Solov’ev, “Determining the eigenfrequencies of nanoobjects,” Dokl. Ross. Akad. Nauk, 406, No. 6, 756–759 (2006).Google Scholar
  12. 12.
    V. A. Eremeyev, E. A. Ivanova, N. F. Morozova, and A. N. Solov’ev, “One method of determining the eigen-frequencies of an ordered system of nanoobjects,” Zh. Tekh. Fiz., 77, No. 1, 3–8 (2007).Google Scholar
  13. 13.
    M. Lorenz, J. Lenzner, E. M. Kaidashev, et al., “Cathodoluminescence of selected single ZnO nanowires on sapphire,” Ann. Physik, 13, Nos. 1/2, 39–42 (2004).CrossRefADSGoogle Scholar
  14. 14.
    E. M. Kaidashev, M. Lorenz, H. Wenckstern, et al., “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multi-step pulsed laser deposition,” Appl. Phys. Lett., 82, 3901–3903 (2003).CrossRefADSGoogle Scholar
  15. 15.
    M. Lorenz, H. Hochmuth, R. Schmidt-Grund, et al., “Advances of pulsed laser deposition of ZnO thin films,” Ann. Physik, Bd 13, Nos. 1/2, 59–61 (2004).CrossRefADSGoogle Scholar
  16. 16.
    Yu. N. Rabotnov, Mechanics of a Deformable Solid [in Russian], Nauka, Moscow (1988).Google Scholar
  17. 17.
    S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York (1959).Google Scholar
  18. 18.
    É. I. Grigolyuk and I. T. Selezov, Nonclassical Theories of Oscillations of Rods, Plates, and Shells [in Russian], VINITI, Moscow (1973). (Achievements of Science and Engineering, Ser. Mechanics of Deformable Solids, Vol. 5.)Google Scholar
  19. 19.
    P. A. Zhilin, “General equations of the non-classical shell theory,” in: Tr. Leningrad. Polytekh. Inst., No. 386, 29–46 (1982).Google Scholar
  20. 20.
    H. Al’tenbach and P. A. Zhilin, “General theory of simple flexible shells,” Usp. Mekh., No. 4, 107–148 (1988).Google Scholar
  21. 21.
    P. A. Zhilin, Applied Mechanics. Fundamentals of the Theory of Shells [in Russian], Izd. St.-Peterb. Univ., St. Petersburg (2006).Google Scholar
  22. 22.
    H. Altenbach, “An alternative determination of transverse shear stiffnesses for sandwich and laminated plates,” Int. J. Solids Struct., 37, No. 25, 3503–3520 (2000).zbMATHCrossRefGoogle Scholar
  23. 23.
    H. Altenbach, “On the determination of transverse shear stiffnesses of orthotropic plates,” Z. Angew. Math. Phys., 51, 629–649 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    E. Reissner, “On bending of elastic plates,” Quart. Appl. Math., 5, 55–68 (1947).zbMATHMathSciNetGoogle Scholar
  25. 25.
    H. Altenbach and V. A. Eremeyev, “Eigen-vibrations of plates made of functionally graded material,” Comput., Mater., Continua, 9, No. 2, 153–177 (2009).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  • V. A. Eremeyev
    • 1
    • 2
    Email author
  • E. A. Ivanova
    • 3
  • D. A. Indeitsev
    • 4
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Saint-Petersburg State Polytechnical UniversitySt. PetersburgRussia
  4. 4.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations