Natural vibrations in a system of nanotubes

  • V. A. Eremeyev
  • E. A. Ivanova
  • N. F. Morozov
  • S. E. Strochkov
Article

Abstract

Natural vibrations in a system of parallel micro-and nanotubes attached horizontally to an elastic substrate are analyzed. It is shown that several first eigenfrequencies corresponding to flexural vibrations of a single nanotube can be identified with the use of the linear shell theory within the frequency spectrum of an “integrated system” consisting of a substrate and nanotubes. This allows the flexural rigidity of a single nanotube to be evaluated. The resultant conclusion is supported by finite-element modeling based on the three-dimensional theory of electroelasticity. Results of a modal analysis of gallium arsenide nanotubes are presented.

Key words

nanomechanics natural vibrations nanotubes flexural rigidity shells electroelasticity finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yu. Gutkin and I. A. Ovid’ko, Defects and Plasticity Mechanism in Nanostructured and Noncrystalline Materials [in Russian], Yanus, St. Petersburg (2003).Google Scholar
  2. 2.
    M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformable Nanostructures, Vol. 1, Nanocrystalline Materials [in Russian], Yanus, St. Petersburg (2003).Google Scholar
  3. 3.
    A. M. Krivtsov and N. F. Morozov, “Anomalies in mechanical properties of nano-sized objects,” Dokl. Ross. Akad. Nauk, 381, No. 3, 345–347 (2001).Google Scholar
  4. 4.
    B. Bhushan (ed.), Springer Handbook of Nanotechnology, Springer-Verlag, Berlin (2004).Google Scholar
  5. 5.
    W. A. Goddard et al. (eds.), Handbook of Nanoscience, Engineering, and Technology, CRC Press, Boca Raton (2003).Google Scholar
  6. 6.
    R. H. Marshall, I. A. Sokolov, Y. N. Ning, et al., “Photoelectromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol., 7, 1683–1686 (1996).CrossRefADSGoogle Scholar
  7. 7.
    S. Gould, Variational Methods for Eigenvalue Problems. An Introduction to the Weinstein Method of Intermediate Problems, London (1966).Google Scholar
  8. 8.
    V. A. Eremeyev, E. A. Ivanova, N. F. Morozov, and A. N. Solov’ev, “On determining eigenfrequencies of nanoobjects,” Dokl. Ross. Akad. Nauk, 406, No. 6, 756–759 (2006).Google Scholar
  9. 9.
    V. A. Eremeyev, E. A. Ivanova, N. F. Morozov, and A. N. Solov’ev, “Procedure for determining eigenfrequencies of ordered arrays of nanoobjects,” Zh. Tekh. Fiz., 77, No. 1, 3–8 (2007).Google Scholar
  10. 10.
    M. Lorenz, J. Lenzner, E. M. Kaidashev, et al. “Cathodoluminescence of selected single ZnO nanowires on sapphire,” Ann. Physik, 2, No. 1, 39–42 (2004).CrossRefADSGoogle Scholar
  11. 11.
    E. M. Kaidashev, M. Lorenz, H. Wenckstern, et al., “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multi-step pulsed laser deposition,” Appl. Phys. Lett., 82, 3901–3903 (2003).CrossRefADSGoogle Scholar
  12. 12.
    M. Lorenz, H. Hochmuth, R. Schmidt-Grund, et al., “Advances of pulsed laser deposition of ZnO thin films,” Ann. Physik, 13, No. 1, 59–61 (2004).CrossRefADSGoogle Scholar
  13. 13.
    S. V. Golod, V. Ya. Prinz, V. I. Mashanov, and A. K. Gutakovski, “Fabrication of conducting GeSi/Si micro-and nanotubes and helical microcoils,” Semiconductor Sci. Technol., 16, 181–185 (2001).CrossRefADSGoogle Scholar
  14. 14.
    V. Ya. Prinz, “A new concept in fabricating building blocks for nanoelectronics and nanomechanics devices,” Microelectron. Eng., 69, Nos. 2/4, 466–475 (2003).CrossRefGoogle Scholar
  15. 15.
    V. Ya. Prinz and S. V. Golod, “Elastic silicon-film-based nanoshells: formation, properties, and applications,” J. Appl. Mech. Tech. Fiz., 47, No. 6, 867–878 (2006).CrossRefADSGoogle Scholar
  16. 16.
    P. A. Zhilin, “Master equations of the non-classical shell theory,” in: Tr. Leningrad. Politekh. Inst., No. 386, 29–46 (1982).Google Scholar
  17. 17.
    Kh. Al’tenbakh and P. A. Zhilin, “General theory of simple flexible shells,” Usp. Mekh., No. 4, 107–148 (1988).Google Scholar
  18. 18.
    P. A. Zhilin, Applied Mechanics. Fundamentals of the Shell Theory [in Russian], Izd. St.-Peterburg. Univ., St. Petersburg (2006).Google Scholar
  19. 19.
    A. A. Blistanov, V. S. Bondarenko, V. V. Chkalova, et al., Acoustic Crystals: Handbook [in Russian], Nauka, Moscow (1982).Google Scholar
  20. 20.
    A. Dargys and J. Kundrotas, Handbook of Physical Properties of Ge, Si, GaAs, and InP, Sci. and Encyclopedia Publ., Vilnius (1994).Google Scholar
  21. 21.
    G. Mougin, Continuum Mechanics of Electromagnetic Solids, North-Holland, Netherlands (1988).Google Scholar
  22. 22.
    V. Z. Parton and B. A. Kudryavtsev, Electromagnetic Elasticity of Piezoelectric and Electroconductive Solids [in Russian], Nauka, Moscow (1988).Google Scholar
  23. 23.
    W. Nowacki, Electromagnetic Effects in Solids [Russian translation], Mir, Moscow (1986).Google Scholar
  24. 24.
    E. A. Ivanova and N. F. Morozov, “Approach to experimental determination of the flexural rigidity of nanoshells,” Dokl. Ross. Akad. Nauk, 400, No. 4, 475–479 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. A. Eremeyev
    • 1
    • 4
  • E. A. Ivanova
    • 2
  • N. F. Morozov
    • 3
  • S. E. Strochkov
    • 4
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-Don
  2. 2.St. Petersburg State Polytechnical UniversitySt. Petersburg
  3. 3.St. Petersburg State UniversitySt. Petersburg
  4. 4.Southern Federal UniversityRostov-on-Don

Personalised recommendations