Variation in Emotion and Cognition Among Fishes

  • Victoria A. Braithwaite
  • Felicity Huntingford
  • Ruud van den Bos


Increasing public concern for the welfare of fish species that human beings use and exploit has highlighted the need for better understanding of the cognitive status of fish and of their ability to experience negative emotions such as pain and fear. Moreover, studying emotion and cognition in fish species broadens our scientific understanding of how emotion and cognition are represented in the central nervous system and what kind of role they play in the organization of behavior. For instance, on a macro neuro-architecture level the brains of fish species look dramatically different from those of mammals, while such a dramatic difference does not (always) occur at the level of emotion- and cognition-related behavior. Here, therefore, we discuss the evidence of emotion and cognition in fish species related to underlying neuro-architecture and the role that emotion and cognition play in the organization of behavior. To do so we use a framework encompassing a number of steps allowing a systematic approach to these issues. Emotion and cognition confer on human and non-human animals the capacity to compliment and/or override immediate reflexes to stimuli and so allow a large degree of flexibility in behavior. Systematic research on behavior that in mammals is indicative of emotion and cognition has been conducted in only a few fish species. The data thus far indicate that in these species brain-behavior relationships are not fundamentally different from those observed in mammals. Furthermore, data from other studies show evidence that behavior patterns related to emotion and cognition vary between fish species as well within fish species, related to sex and life history stage for example. From a welfare perspective, knowledge of such variability will potentially help us to design optimal living conditions for fish species kept by humans.


Cognition Emotion Welfare Neuro-architecture Complex behavior Phylogeny 


  1. Arlinghaus, R., Cooke, S. J., Schwab, A., & Cowx, I. G. (2007). Fish welfare: A challenge of the feelings-based approach, with implications for recreational fishing. Fish and Fisheries, 8, 57–71.CrossRefGoogle Scholar
  2. Ashley, P. J., Ringrose, S., Edwards, K. L., Wallington, E., McCrohan, C. R., & Sneddon, L. U. (2009). Effect of noxious stimulation upon antipredator responses and dominance status in rainbow trout. Animal Behaviour, 77, 403–410.CrossRefGoogle Scholar
  3. Ashley, P. J., Sneddon, L. U., & McCrohan, C. R. (2006). Properties of corneal receptors in a teleost fish. Neuroscience Letters, 410, 165–168.CrossRefGoogle Scholar
  4. Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407–419.CrossRefGoogle Scholar
  5. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.CrossRefGoogle Scholar
  6. Benzie, V. L. (1967). Some aspects of the anti-predator responses of two species of stickleback. DPhil thesis, University of Oxford.Google Scholar
  7. Bermond, B. (1997). The myth of animal suffering. In M. Dol, S. Kasanmoentalib, S. Lijmbach, E. Rivas & R. van den Bos (Eds.), Animal consciousness and animal ethics; perspectives from the Netherlands (pp. 125–143). Assen: Van Gorcum, Animals in Philosophy and Science Vol. 1.Google Scholar
  8. Bermond, B. (2001). A neuropsychological and evolutionary approach to animal consciousness and animal suffering. Animal Welfare, 10, S47–S62.Google Scholar
  9. Braithwaite, V. A., & Boulcott, P. (2007). Pain perception, aversion and fear in fish. Diseases of Aquatic Organisms, 75, 131–138.CrossRefGoogle Scholar
  10. Braithwaite, V. A., & Girvan, J. R. (2003). Use of water flow to provide spatial information in a small-scale orientation task. Journal of Fish Biology, 63, 74–83.CrossRefGoogle Scholar
  11. Brelin, D., Petersson, E., Dannewitz, J., Dahl, J., & Winberg, S. (2008). Frequency distribution of coping strategies in four populations of brown trout (Salmo trutta). Hormones and Behaviour, 53, 546–556.CrossRefGoogle Scholar
  12. Brelin, D., Petersson, E., & Winberg, S. (2005). Divergent stress coping styles in juvenile brown trout (Salmo trutta). Annals of the New York Academy of Science, 1040, 239–245.CrossRefGoogle Scholar
  13. Broglio, C., Gómez, A., Durán, E., Ocaña, F. M., Jiménez-Moya, F., & Rodríguez, S. C. (2005). Hallmarks of a common forebrain vertebrate plan: Specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Research Bulletin, 66, 277–281.CrossRefGoogle Scholar
  14. Broglio, C., Rodríguez, F., Gómez, A., Arias, J. L., & Salas, C. (2010). Selective involvement of the goldfish lateral pallium in spatial memory. Behaviorial Brain Research, 210, 191–201.CrossRefGoogle Scholar
  15. Bshary, R., & Côté, I. M. (2008). New perspectives on marine cleaning mutualism. In C. Magnhagen, V. A. Braithwaite, E. Forsgren, & B. G. Kapoor (Eds.), Fish Behavior. New Hampshire: Science Publishers.Google Scholar
  16. Cabanac, M. (1971). Physiological role of pleasure. Science, 173, 1103–1107.CrossRefGoogle Scholar
  17. Cabanac, M. (1979). Sensory pleasure. Quarterly Review of Biology, 54, 1–29.CrossRefGoogle Scholar
  18. Cabanac, M. (1992). Pleasure: The common currency. Journal of Theoretical Biology, 155, 173–200.CrossRefGoogle Scholar
  19. Cabanac, M. (2008). The dialectics of pleasure. In M. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the brain. The neural basis of taste, smell and other rewards (pp. 113–124). Oxford: Oxford University Press.Google Scholar
  20. Clark, R. E., & Squire, L. R. (1998). Classical conditioning and brain systems: The role of awareness. Science, 280, 77–81.CrossRefGoogle Scholar
  21. Damasio, A. R. (1994). Descartes’ error. Emotion, reason and the human brain. New York: Avon Books.Google Scholar
  22. Danisman, E., Bshary, R., & Bergmüller, R. (2010). Do cleaner fish learn to feed against their preference in a reverse reward contingency task? Animal Cognition, 13, 41–49.CrossRefGoogle Scholar
  23. Dawkins, M. S. (2001). Who needs consciousness? Animal Welfare, 10, S19–S29.Google Scholar
  24. de Veer Bos, M. W., & van den Bos, R. (1999). A critical review of methodology and interpretation of mirror self recognition research in nonhuman primates. Animal Behaviour, 58, 459–468.CrossRefGoogle Scholar
  25. Dias-Ferreira, E., Sousa, J. C., Melo, I., Morgado, P., Mesquita, A. R., Cerqueira, J. J., et al. (2009). Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325, 621–625.CrossRefGoogle Scholar
  26. Dickinson, A., & Balleine, B. (1994). Motivational control of goal-directed action. Animal Learning and Behaviour, 22, 1–18.CrossRefGoogle Scholar
  27. Dickinson, A., & Balleine, B. (2008). The cognitive/motivational interface. In M. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the brain. The neural basis of taste, smell and other rewards (pp. 74–84). Oxford: Oxford University Press.Google Scholar
  28. Dunlop, R., & Laming, P. (2005). Mechanoreceptive and nociceptive responses in the central nervous system of goldfish (Carassius auratus) and trout (Oncorhynchus mykiss). The Journal of Pain, 6, 561–568.CrossRefGoogle Scholar
  29. Durán, E., Ocaña, F. M., Broglio, C., Rodríguez, F., & Salas, C. (2010). Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a ‘hole-board’ task. Behaviorial Brain Research, 214, 480–487.CrossRefGoogle Scholar
  30. Gonzalez-Voyer, A., Winberg, S., & Kolm, N. (2009). Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative studies of cichlid fish. BMC Evolutionary Biology, 9, 238. doi: 10.1186/1471-2148-9-238.CrossRefGoogle Scholar
  31. Harvey, M. C., & Brown, G. E. (2004). Dine or dash? Ontogenetic shift in the response of yellow perch to conspecific alarm cues. Environmental Biology of Fishes, 70, 345–352.CrossRefGoogle Scholar
  32. Healy, S. D., & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society, London Series B, 274, 453–464.CrossRefGoogle Scholar
  33. Hoogland, R. D., Morris, D., & Tinbergen, N. (1957). The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defence against predators (Perca and Esox). Behaviour, 10, 205–237.CrossRefGoogle Scholar
  34. Huntingford, F. A., Mesquita, F., & Kadri, S. (2012). Personality variation in cultures fish: Implications for production and welfare. In C. Carare & D. Maestripieri (Eds.), Animal personalities: Behavior, physiology and evolution. Chicago: Chicago University Press.Google Scholar
  35. Huntingford, F. A., Wright, F. P. I., & Tierney, J. F. (1994). Adaptive variation in anti-predator behavior. In M. A. Bell & S. E. Foster (Eds.), The evolutionary biology of sticklebacks. Cambridge: Cambridge University Press.Google Scholar
  36. Ito, H., & Yamamoto, N. (2009). Non-laminar cerebral cortex in teleost fishes? Biology Letters, 5, 117–121.CrossRefGoogle Scholar
  37. Kolm, N., Gonzalez-Voyer, A., Brelin, D., & Winberg, S. (2009). Evidence for small-scale variation in the vertebrate brain: Mating strategy and sex affect brain size in wild brown trout (Salmo trutta). Journal of Evolutionary Biology, 22, 2524–2531.CrossRefGoogle Scholar
  38. Kondoh, M. (2010). Linking learning approaches to trophic interactions: A brian size-based approach. Functional Ecology, 24, 35–43.CrossRefGoogle Scholar
  39. Korte, S. M., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade off in health and disease. Neuroscience and Biobehavioral Reviews, 29, 3–38.CrossRefGoogle Scholar
  40. Kotrschal, K., Van Staaden, M. J., & Huber, R. (1998). Fish brains: Evolution and environmental relationships. Reviews in Fish Biology and Fisheries, 8, 272–408.CrossRefGoogle Scholar
  41. Larson, E. T., Norris, D. O., & Summers, C. H. (2003). Monoamine changes associated with socially induced sex reversal in the saddleback wrasse. Neuroscience, 119, 251–263.CrossRefGoogle Scholar
  42. Linsey, T. J., & Collin, S. P. (2006). Brain morphology in large pelagic fish: A comparison between sharks and teleosts. Journal of Fish Biology, 68, 532–554.CrossRefGoogle Scholar
  43. Macphail, E. M. (1982). Brain and intelligence in vertebrates. Oxford: Clarendon Press.Google Scholar
  44. Mason, G. J. (2010). Species differences in responses to captivity: Stress, welfare and the comparative method. Trends in Ecology & Evolution, 25, 713–721.CrossRefGoogle Scholar
  45. Mendl, M., & Paul, E. S. (2004). Consciousness, emotion and animal welfare: Insights from cognitive science. Animal Welfare, 13, S17–S25.Google Scholar
  46. Nilsson, J., Kristiansen, T. S., Fosseidengen, J. E., Ferno, A., & van den Bos, R. (2008). Learning in cod (Gadus morhua): Long trace interval retention. Animal Cognition, 11, 215–222.CrossRefGoogle Scholar
  47. Nordgreen, J., Horsberg, T. E., Ranheim, B., & Chen, A. C. N. (2007). Somatosensory evoked potentials in the telencephalon of Atlantic salmon (Salmo salar) following galvanic stimulation of the tail. Journal of Comparative Physiology A, 193, 1235–1242.CrossRefGoogle Scholar
  48. Nordgreen, J., Janczak, A. M., Hovland, A. L., Ranheim, B., & Horsberg, T. E. (2010). Trace classical conditioning in rainbow trout (Oncorhynchus mykiss): What do they learn? Animal Cognition, 13, 303–309.CrossRefGoogle Scholar
  49. Panskepp, J. (2003). At the interface of the affective, behavioral, and cognitive neurosciences: Decoding the emotional feelings of the brain. Brain and Cognition, 52, 4–14.CrossRefGoogle Scholar
  50. Panula, P., Chen, Y.-C., Priyadarshini, M., Kudo, H., Semenova, S. M., Sundvik, M., et al. (2010). The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiology of Disease, 40, 46–57.CrossRefGoogle Scholar
  51. Panula, P., Sallinen, V., Sundvik, M., Kolehmainen, J., Torkko, V., Tiittula, A., et al. (2006). Modulatory neurotransmitter systems and behavior: Towards zebrafish models of neurodegenerative diseases. Zebrafish, 3, 235–247.CrossRefGoogle Scholar
  52. Pollen, A. A., Dobberfuhl, A. P., Scace, J., Igulu, M. M., Renn, S. C. P., Shumway, C. A., et al. (2007). Environmental complexity and social organisation sculpt the brain in Lake Tanganyikan cichlid fish. Brain, Behaviour and Evolution, 70, 21–39.CrossRefGoogle Scholar
  53. Rodríguez, F., López, J. C., Vargas, J. P., Gómez, Y., Broglio, C., & Salas, C. (2002). Conservation of spatial memory function in the pallial forebrain of amniotes and ray-finned fishes. Journal of Neuroscience, 22, 2894–2903.Google Scholar
  54. Rolls, E. (2007). Emotions explained. Oxford: Oxford University Press.Google Scholar
  55. Romanes, G. J. (1883). Mental evolution in animals. London: Kegan Paul, Trench and Co.Google Scholar
  56. Salas, C., Broglio, C., Durán, E., Gómez, A., Ocaña, F. M., Jiménez-Moya, F., et al. (2006). Neuropsychology of learning and memory in teleost fish. Zebrafish, 3, 157–171.CrossRefGoogle Scholar
  57. Schwabe, L., Oitzl, M. S., Phlippsen, C., Richter, S., Bohringer, A., Wippich, W., et al. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learning and Memory, 14, 109–116.CrossRefGoogle Scholar
  58. Schwabe, L., & Wolf, O. T. (2009). Stress prompts habit behavior in humans. Journal of Neuroscience, 29, 7191–7198.CrossRefGoogle Scholar
  59. Schwabe, L., Wolf, O. T., & Oitzl, M. S. (2010). Memory formation under stress: Quantity and quality. Neuroscience and Biobehavioral Reviews, 34, 584–591.CrossRefGoogle Scholar
  60. Shettleworth, S. J. (1998). Cognition evolution and behaviour. New York: Oxford University Press.Google Scholar
  61. Shumway, C. A. (2008). Habitat complexity brain and behavior. Brain, Behaviour and Evolution, 72, 123–134.CrossRefGoogle Scholar
  62. Sneddon, L. U., Braithwaite, V. A., & Gentle, M. J. (2003a). Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proceeding of the Royal Society, London, Series B, 270, 1115–1121.CrossRefGoogle Scholar
  63. Sneddon, L. U., Braithwaite, V. A., & Gentle, M. J. (2003b). Novel object test: Examining pain and fear in the rainbow trout. The Journal of Pain, 4, 431–440.CrossRefGoogle Scholar
  64. Spruijt, B. M., van den Bos, R., & Pijlman, F. (2001). A concept of welfare based on how the brain evaluates its own activity: Anticipatory behavior as an indicator for this activity. Applied Animal Behaviour Science, 72, 145–171.CrossRefGoogle Scholar
  65. Stienen, P. J., van Oostrom, H., van den Bos, R., de Groot, H. N. M., & Hellebrekers, L. J. (2006). Vertex-recorded, rather than primary somatosensory cortex-recorded, somatosensory-evoked potentials signal unpleasantness of noxious stimuli in the rat. Brain Research Bulletin, 70, 203–212.CrossRefGoogle Scholar
  66. Tulley, J. J., & Huntingford, F. A. (1987). Paternal care and the development of adaptive variation in anti-predator responses in sticklebacks. Animal Behaviour, 35, 1570–1572.CrossRefGoogle Scholar
  67. van den Bos, R. (1997). Reflections on the organisation of mind, brain and behavior. In M. Dol, S. Kasanmoentalib, S. Lijmbach, E. Rivas & R. van den Bos (Eds.), Animal consciousness and animal ethics; perspectives from the Netherlands (pp. 144–166). Assen: Van Gorcum, Animals in Philosophy and Science Vol. 1.Google Scholar
  68. van den Bos, R. (2000). General organizational principles of the brain as key to the study of animal consciousness. Psyche, 6, published on-line at
  69. van den Bos, R. (2001). The hierarchical organization of the brain as a key to the study of consciousness in human and non-human animals: Phylogenetic implications. Animal Welfare, 10, S246–S247.Google Scholar
  70. van den Bos, R. (2004). Emotion and cognition. In M. Bekoff (Ed.), The handbook of animal behavior (pp. 554–557). Westport (CT): Greenwood Press.Google Scholar
  71. van den Bos, R., & de Ridder, D. (2006). Evolved to satisfy our immediate needs: Self control and the rewarding properties of food. Appetite, 47, 24–29.CrossRefGoogle Scholar
  72. van den Bos, R., Houx, B. B., & Spruijt, B. M. (2002). Cognition and emotion in concert in human and nonhuman animals. In M. Bekoff, C. Allen, & G. Burghardt (Eds.), The cognitive animal; empirical and theoretical perspectives on animal Cognition (pp. 97–103). Cambridge (MA): The MIT Press.Google Scholar
  73. Vargas, J. P., López, J. C., & Portavella, M. (2009). What are the functions of fish brain pallium? Brain Research Bulletin, 79, 436–440.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Victoria A. Braithwaite
    • 1
  • Felicity Huntingford
    • 2
  • Ruud van den Bos
    • 3
  1. 1.School of Forest Resources and Department of BiologyPenn State UniversityUniversity ParkUSA
  2. 2.College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
  3. 3.Behavioral Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations