How Useful are the Concepts of Familiarity, Biological Integrity, and Ecosystem Health for Evaluating Damages by GM Crops?

Articles

Abstract

In the discussion about consequences of the release of genetically modified (GM) crops, the meaning of the term “environmental damage” is difficult to pin down. We discuss some established concepts and criteria for understanding and evaluating such damages. Focusing on the concepts of familiarity, biological integrity, and ecosystem health, we argue that, for the most part, these concepts are highly ambiguous. While environmental damage is mostly understood as significant adverse effects on conservation resources, these concepts may not relate directly to effects on tangible natural resources but rather to parameters of land use or ecological processes (e.g., the concept of biological integrity). We stress the importance of disclosing the normative assumptions underlying damage concepts and procedures for the evaluation of damages by GM crops. A conceptualization of environmental damage should precede its operationalization. We recommend an unambiguous definition for damage developed earlier and recommend that evaluation criteria be based on this. However, a general damage definition cannot replace case-specific operationalization of damage, which remains an important future challenge.

Keywords

Adverse effects Assessment criteria Biodiversity Concept formation Convention on biological diversity (CBD) Environmental damage Genetic engineering 

References

  1. Altieri, M. A. (2000). The ecological impacts of transgenic crops on agroecosystem health. Ecosystem Health, 6, 13–23.Google Scholar
  2. American Heritage Dictionary. (2000). The American heritage dictionary of the english language. Boston, Massachusetts: Houghton Mifflin Company.Google Scholar
  3. Andow, D. A., & Zwahlen, C. (2006). Assessing environmental risks of transgenic plants. Ecology Letters, 9, 196–214.CrossRefGoogle Scholar
  4. Angermeier, P. L., & Karr, J. R. (1994). Biological integrity versus biological diversity as policy directives. BioScience, 44, 690–697.CrossRefGoogle Scholar
  5. Arriaga, L., Huerta, E., Lira-Saade, R., Moreno, E., & Alarcón, J. (2006). Assessing the risk of releasing transgenic Curcubita spp. in Mexico. Agriculture, Ecosystems & Environment, 112, 291–299.CrossRefGoogle Scholar
  6. Barber, S. (1999). Transgenic plants and safety regulation. In K. Ammann, Y. Jacot, V. Simonsen, & G. Kjellsson (Eds.), Methods for risk assessment of transgenic plants. Volume III: Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science (pp. 155–158). Basel, Switzerland: Birkhäuser.Google Scholar
  7. Bartz, R., Heink, U., & Kowarik, I. (2010). Proposed definition of environmental damage illustrated by the cases of genetically modified crops and invasive species. Conservation Biology, 24, 675–681.CrossRefGoogle Scholar
  8. Baumgarte, S., & Tebbe, C. C. (2005). Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Molecular Ecology, 14, 2539–2551.CrossRefGoogle Scholar
  9. Boyd, J., & Banzhaf, S. (2007). What are ecosystem services? The need for standardized environmental accounting units. Ecological Economics, 63, 616–626.CrossRefGoogle Scholar
  10. Brand, F., & Jax, K. (2007). Focussing the meaning(s) of resilience: resilience as a descriptive concept and a boundary object. Ecology and Society 12. http://www.ecologyandsociety.org/vol12/iss1/art23/. Accessed 5 May 2009.
  11. Breckling, B., & Züghart, W. (2001). Die Etablierung einer ökologischen Langzeitbeobachtung beim großflächigen Anbau transgener Nutzpflanzen. In M. Lemke & G. Winter (Eds.), Bewertung von Umweltauswirkungen von gentechnisch veränderten Organismen im Zusammenhang mit naturschutzbezogenen Fragestellungen (pp. 319–343). Berlin: UBA-Berichte 3/01.Google Scholar
  12. Callicott, J. B., Crowder, L. B., & Mumford, K. (1999). Current normative concepts in conservation. Conservation Biology, 13, 22–35.CrossRefGoogle Scholar
  13. Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Washington, DC: Carnegie Institute of Washington, Publication No. 242.Google Scholar
  14. Comstock, G. (1998). Is it unnatural to genetically modify plants? Weed Science, 46, 647–651.Google Scholar
  15. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
  16. Dobson, A. (1997). Genetic engineering and environmental ethics. Cambridge Quarterly of Healthcare Ethics, 6, 205–221.CrossRefGoogle Scholar
  17. Doyle, D., & Kelso, T. (2004). Genetically engineered salmon, ecological risk, and environmental policy. Bulletin of Marine Science, 74, 509–528.Google Scholar
  18. Ehrlich, P. R., & Ehrlich, A. H. (1981). Extinction: The causes and consequences of the disappearance of species. New York: Random House.Google Scholar
  19. Evernden, N. (1992). The social creation of nature. Baltimore: Johns Hopkins.Google Scholar
  20. Giampietro, M. (2002). The precautionary principle and ecological hazards of genetically modified organisms. Ambio, 31, 466–470.Google Scholar
  21. Hails, R. S. (2002). Assessing the risks associated with new agricultural practices. Nature, 418, 685–688.CrossRefGoogle Scholar
  22. Hargrove, E. (2003). Weak anthropocentric intrinsic value. In A. Light & H. Rolston (Eds.), An overview of environmental ethics (pp. 175–188). Oxford: Blackwell.Google Scholar
  23. Haskell, B. D., Norton, B. G., & Costanza, R. (1992). What is ecosystem health and why should we worry about it? In R. Costanza, B. G. Norton, & B. D. Haskell (Eds.), Ecosystem health: New goals for environmental management (pp. 1–18). Washington DC: Island Press.Google Scholar
  24. Heink, U., & Kowarik, I. (2010). What are indicators? On the definition of indicators in ecology and environmental planning. Ecological Indicators, 10, 584–593.CrossRefGoogle Scholar
  25. Hempel, C. G. (1952). Fundamentals of concept formation in empirical science. Chicago: University of Chicago Press.Google Scholar
  26. Hill, M. O., Roy, D. B., & Thompson, K. (2002). Hemeroby, urbanity and ruderality: Bioindicators of disturbance and human impact. Journal of Applied Ecology, 39, 708–720.CrossRefGoogle Scholar
  27. Holland, A. (1995). The use and abuse of ecological concepts in environmental ethics. Biodiversity and Conservation, 4, 812–826.CrossRefGoogle Scholar
  28. Holtug, N. (2001). The harm principle and genetically modified food. Journal of Agricultural and Environmental Ethics, 14, 169–178.CrossRefGoogle Scholar
  29. Hull, R. B., Richert, D., Seekamp, E., Robertson, D., & Buhyoff, G. J. (2003). Understandings of environmental quality: Ambiguities and values held by environmental professionals. Environmental Management, 31, 1–13.CrossRefGoogle Scholar
  30. Hutton, S. A., & Giller, P. S. (2003). The effects of the intensification of agriculture on northern temperate dung beetle communities. Journal of Applied Ecology, 40, 994–1007.CrossRefGoogle Scholar
  31. Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.CrossRefGoogle Scholar
  32. Jamieson, D. (1995). Ecosystem health: Some preventive medicine. Environmental Values, 4, 333–344.CrossRefGoogle Scholar
  33. Karr, J. R., & Dudley, D. R. (1981). Ecological perspective on water quality goals. Environmental Management, 5, 55–68.CrossRefGoogle Scholar
  34. Kowarik, I. (1990). Some responses of flora and vegetation to urbanization in Central Europe. In H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the Urban environment (pp. 45–74). The Hague: SPB Academic Publishing.Google Scholar
  35. Kowarik, I. (1999). Natürlichkeit, Naturnähe und Hemerobie als Bewertungskriterien. In W. Konold, R. Böcker, & U. Hampicke (Eds.), Handbuch für Naturschutz und Landschaftspflege V-2.1 (pp. 1–18). Landsberg, Germany: Ecomed.Google Scholar
  36. Lackey, R. T. (2001). Values, policy, and ecosystem health. BioScience, 51, 437–443.CrossRefGoogle Scholar
  37. Lammerts van Bueren, E., & Struik, P. C. (2005). Integrity and rights of plants: Ethical notions in organic plant breeding and propagation. Journal of Agricultural and Environmental Ethics, 18, 479–493.CrossRefGoogle Scholar
  38. Levidow, L., & Carr, S. (1999). Dilemmas of risk-assessment research for transgenic crops. In K. Ammann, Y. Jacot, V. Simonsen, & G. Kjellsson (Eds.), Methods for risk assessment of transgenic plants, Volume III: Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science (pp. 213–222). Basel, Switzerland: Birkhäuser.Google Scholar
  39. Levidow, L., Carr, S., Schomberg, R. V., & Wield, D. (1996). Regulating agricultural biotechnology in Europe: Harmonization difficulties, opportunities, dilemmas. Science and Public Policy, 23, 135–157.Google Scholar
  40. Lilley, A. K., Bailey, M. J., Cartwright, C., Turner, S. L., & Hirsch, P. R. (2006). Life in earth: The impact of GM plants on soil ecology? Trends in Biotechnology, 24, 9–14.CrossRefGoogle Scholar
  41. Mace, G. M., & Baillie, J. E. M. (2007). The 2010 biodiversity indicators: Challenges for science and policy. Conservation Biology, 21, 1406–1413.CrossRefGoogle Scholar
  42. Mageau, M. T., Costanza, R., & Ulanowicz, R. E. (1995). The development and initial testing of a quantitative assessment of ecosystem health. Ecosystem Health, 1, 201–213.Google Scholar
  43. McCann, K. S. (2000). The diversity-stability debate. Nature, 405, 228–233.CrossRefGoogle Scholar
  44. Mikkelson, G. M. (2009). Diversity-stability hypothesis. In J. B. Callicott, R. Frodeman, V. Davion, B. G. Norton, C. Palmer, & P. B. Thompson (Eds.), Encyclopedia of environmental ethics and philosophy (Vol. 1, pp. 255–256). Farmington Hills, MI: MacMillan.Google Scholar
  45. Muir, W. M., & Howard, R. D. (2004). Characterization of environmental risk of genetically engineered (GE) organisms and their potential to control exotic invasive species. Aquatic Sciences, 66, 414–420.CrossRefGoogle Scholar
  46. Nap, J.-P., Metz, P. L. J., Escaler, M., & Conner, A. J. (2003). The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. The Plant Journal, 33, 1–18.CrossRefGoogle Scholar
  47. Norton, B. G. (1993). Should environmentalists be organicists? Topoi, 12, 21–30.CrossRefGoogle Scholar
  48. Norton, B. (1995). Objectivity, intrinsicality, and sustainability. Comment on Nelson’s ‘Health and disease as “thick concepts” in ecosystemic contexts’. Environmental Values, 4, 323–332.CrossRefGoogle Scholar
  49. Noss, R. F. (1990). Indicators for monitoring biodiversity: A hierarchical approach. Conservation Biology, 4, 355–364.CrossRefGoogle Scholar
  50. OECD. (1993). Safety considerations for biotechnology. Scale-up of crop plants. Paris: OECD.Google Scholar
  51. Okey, B. W. (1996). Systems approaches and properties, and agroecosystem health. Journal of Environmental Management, 48, 187–199.CrossRefGoogle Scholar
  52. Ott, K. (2003). The spectrum of environmental values. In K. Ott & P. P. Thapa (Eds.), Greifswald’s environmental ethics (pp. 31–40). Greifswald: Steinbeckerverlag Rose.Google Scholar
  53. Pilson, D., & Prendeville, H. R. (2004). Ecological effects of transgenic crops and the escape of transgenes into wild populations. Annual Review of Ecology, Evolution, and Systematics, 35, 149–174.CrossRefGoogle Scholar
  54. Potthast, T. (2004). Conceptual, epistemological, and ethical perspectives on “ecological damage” with regard to genetically modified organisms. Naturschutz und Biologische Vielfalt, 1, 245–256.Google Scholar
  55. Rapport, D. J. (1989). What constitutes ecosystem health? Perspectives in Biology and Medicine, 33, 120–132.Google Scholar
  56. Rapport, D. J., Gaudet, C., Karr, J. R., Baron, J. S., Bohlen, C., Jackson, W., et al. (1998). Evaluating landscape health: integrating societal goals and biophysical process. Journal of Environmental Management, 53, 1–15.CrossRefGoogle Scholar
  57. Redford, K. H., & Richter, B. D. (1999). Conservation of biodiversity in a world of use. Conservation Biology, 13, 1246–1256.CrossRefGoogle Scholar
  58. Redford, K. H., & Sanderson, S. E. (1992). The brief, barren marriage of biodiversity and sustainability. Bulletin of the Ecological Society of America, 73, 36–39.Google Scholar
  59. Rolston, H., I. I. I. (1991). Environmental ethics: Values in and duties to the natural world. In F. H. Bormann & S. R. Kellert (Eds.), The broken circle: Ecology, economics, ethics (pp. 73–96). New Haven: Yale University Press.Google Scholar
  60. Sagoff, M. (2005). Do non-native species threaten the natural environment? Journal of Agricultural and Environmental Ethics, 18, 215–236.CrossRefGoogle Scholar
  61. Shrader-Frechette, K. (1997). Ecological risk assessment and ecosystem health: Fallacies and solutions. Ecosystem Health, 3, 73–81.CrossRefGoogle Scholar
  62. Shrader-Frechette, K., & McCoy, E. (1994). How the tail wags the dog: How value judgments determine ecological science. Environmental Values, 3, 107–120.CrossRefGoogle Scholar
  63. Siipi, H. (2004). Naturalness in biological conservation. Journal of Agricultural and Environmental Ethics, 17, 457–477.CrossRefGoogle Scholar
  64. Snow, A. A., Andow, D. A., Gepts, P., Hallerman, E. M., Power, A., Tiedje, J. M., et al. (2005). Genetically engineered organisms and the environment: Current status and recommendations. Ecological Applications, 15, 377–404.CrossRefGoogle Scholar
  65. SRU (Sachverständigenrat für Umweltfragen-German Advisory Council on the Environment). (2004). Umweltpolitische Handlungsfähigkeit sichern. Umweltgutachten 2004 des Rates von Sachverständigen für Umweltfragen. Berlin: Nomos Verlagsgesellschaft.Google Scholar
  66. Straughan, R. (1995a). Ethics, Morality and Crop Biotechnology. 1. Intrinsic Concerns. Outlook on Agriculture, 24, 187–192.Google Scholar
  67. Straughan, R. (1995b). Ethics, Morality and Crop Biotechnology. 2. Extrinsic concerns about consequences. Outlook on Agriculture, 24, 233–240.Google Scholar
  68. Suter, G. W. (1993). A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry, 12, 1533–1539.CrossRefGoogle Scholar
  69. Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284.CrossRefGoogle Scholar
  70. Wachbroit, R. (1994). Normality as a biological concept. Philosophy of Science, 61, 579–591.CrossRefGoogle Scholar
  71. Westra, L. (1998). Biotechnology and transgenics in agriculture and aquaculture: The perspective from ecosystem integrity. Environmental Values, 7, 79–96.CrossRefGoogle Scholar
  72. White, J. L. (1999). The concept of familiarity and its role in the commercialization of pest resistant genetically engineered plants. In K. Ammann, Y. Jacot, V. Simonsen, & G. Kjellsson (Eds.), Methods for risk assessment of transgenic plants. Volume III: Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science (pp. 225–226). Basel, Switzerland: Birkhäuser.Google Scholar
  73. Xu, W., & Mage, J. A. (2001). A review of concepts and criteria for assessing agroecosystem health including a preliminary case study of southern Ontario. Agriculture, Ecosystems & Environment, 83, 215–233.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of EcologyTechnical University BerlinBerlinGermany

Personalised recommendations