Sustainable Aquaculture: Are We Getting There? Ethical Perspectives on Salmon Farming

  • Ingrid Olesen
  • Anne Ingeborg Myhr
  • G. Kristin Rosendal


Aquaculture is the fastest growing animal producing sector in the world and is expected to play an important role in global food supply. Along with this growth, concerns have been raised about the environmental effects of escapees and pollution, fish welfare, and consumer health as well as the use of marine resources for producing fish feed. In this paper we present some of the major challenges salmon farming is facing today. We discuss issues of relevance to how to ensure sustainability, by focusing on animal production systems, breeding approaches, sources for feed ingredients, and genetic engineering strategies. Other crucial issues such as animal welfare, environmental quality, and ethics are elaborated with regard to relevance for the sustainability of aquaculture. Additionally, we comment on socio-economic distributive implications by intellectual property rights (IPR) strategies on access to genetic material and traceability. To improve sustainability of salmon farming we suggest that there is a need for new approaches to guide research, for identification of ethical issues, and for engaging stakeholders in resolving these challenges.


Salmon farming Animal welfare Global food supply Genetic resources Intellectual property rights (IPR) Sustainability 



Financial support from Research Council of Norway through the project “Stimulating sustainable innovation in aquaculture” (Project number 187970/S10) for this paper is acknowledged, as well as the funding by Nordforsk of the Nordic Network on Agriculture and Food Ethics. The authors will also thank Dr. Karl Shearer for valuable discussions and comments to the paper and the anonymous reviewer for their comments on an earlier version of this paper.


  1. Anonymous. (2004). Final report on the Indo-Norwegian collaborative projects (56 pp.). Bhubaneswar: Central Institute of Freshwater Aquaculture (CIFA).Google Scholar
  2. Anonymous. (2009). Dagens husdyravl i et etisk perspektiv. (only available in Norwegian) Accessed 29 April 2010.
  3. Beitinger, T. L. (1990). Behavioral reactions for the assessment of stress in fishes. Journal of Great Lakes Research, 16, 495–528.CrossRefGoogle Scholar
  4. Bennett, R. M., & Blaney, R. (2002). Social consensus, moral intensity and willingness to pay to address a farm animal welfare issue. Journal of Economic Psychology, 23, 501–520.CrossRefGoogle Scholar
  5. Bentsen, H. B., & Thodesen, J. (2005). Genetic interactions between farmed and wild fish, with examples from the Atlantic salmon case in Norway. In T. Gjedrem (Ed.), Selection and breeding programs in aquaculture (pp. 319–334). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  6. Brascamp, E. W., Smith, C., & Guy, D. R. (1985). Derivation of economic weights from profit equations. Animal Production, 40, 175–180.CrossRefGoogle Scholar
  7. Breivik, H., Thorstad, O. (2002). WO/2004/007654—a process for decreasing environmental pollutants in an oil or a fat, a volatile environmental pollutants decreasing working fluid, a health supplement, and an animal feed product.
  8. Breivik, H., & Thorstad, O. (2005). Removal of organic environmental pollutants from fish oil by short-path distillation. Lipid Technology, 17(3), 55–58.Google Scholar
  9. Broom, D. M. (1986). Indicators of poor welfare. British Veterinary Journal, 142, 524–526.CrossRefGoogle Scholar
  10. Carlsson, F., Frykblom, P., & Lagerkvist, C. J. (2007). Consumer willingness to pay for farm animal welfare: Mobile abattoirs versus transportation to slaughter. European Review of Agriculture Economics, 34, 321–344.CrossRefGoogle Scholar
  11. Chandroo, K. P., Duncan, I. J. H., Moccia, R. D., et al. (2004a). Can fish suffer? Perspectives on sentience, pain, fear and stress. Applied Animal Behavior Science, 86, 225–250.Google Scholar
  12. Chandroo, K. P., Yue, S., Moccia, R. D., et al. (2004b). An evaluation of current perspectives on consciousness and pain in fishes. Fish and Fisheries, 5, 281–295.CrossRefGoogle Scholar
  13. Clifford, S. L., McGinnity, P., & Ferguson, A. (1998). Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Canadian Journal of Fisheries and Aquatic Science, 55, 358–363.CrossRefGoogle Scholar
  14. Crozier, W. (1993). Evidence for genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L.) in a northern Irish river. Aquaculture, 113, 19–29.CrossRefGoogle Scholar
  15. Cubitt, K. F., Winberg, S., Huntingford, F. A., Kadri, S., Crampton, V. O., & Øverli, Ø. (2008). Social hierarchies, growth and brain serotonin metabolism in Atlantic salmon (Salmo salar) kept under commercial rearing conditions. Physiology & behavior, 94, 529–535.Google Scholar
  16. Dawkins, M. S. (2003). Behavior as a tool in the assessment of animal welfare. Zoology, 106, 383–387.CrossRefGoogle Scholar
  17. Dekkers, J. C. M., & Gibson, J. P. (1998). Applying breeding objectives to dairy cattle improvements. Journal of Dairy Science, 81, 9–35.CrossRefGoogle Scholar
  18. Delgado, P. L., Price, L. H., Miller, H. L., Salomon, R. M., Aghajanian, G. K., Heninger, G. R., et al. (1994). Serotonin and the neurobiology of depression—effects of tryptophan depletion in drug-free depressed-patients. Archives of General Psychology, 51, 865–874.Google Scholar
  19. Deutsch, L., Gräslund, S., Folke, C., Troell, M., Huitric, M., Kautsky, N., et al. (2007). Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Global Environmental Change, 17, 238–249.CrossRefGoogle Scholar
  20. Devlin, R. H., Biagi, C. A., & Yesaki, T. Y. (2004). Growth, viability, and genetic characteristics of GH transgenic coho salmon strains. Aquaculture, 236, 607–632.CrossRefGoogle Scholar
  21. Devlin, R. H., Biagi, C. A., Yesaki, T. Y., Smailus, D. E., & Byatt, J. C. (2001). Growth of domesticated transgenic fish. A growth-hormone transgene boosts the size of wild but not domesticated trout. Nature, 409, 781–782.CrossRefGoogle Scholar
  22. Devlin, R. H., Yesaki, T. Y., Biagi, C. A., Donaldson, E. M., Swanson, P., & Chan, W. K. (1994). Extraordinary salmon growth. Nature, 371, 209–210.CrossRefGoogle Scholar
  23. Directorate of Fisheries (2010) Marine protected areas. Accessed 29 April 2010.
  24. Directorate of Fisheries (Fiskeridirektoratet) (2009) Nøkkeltall fra norsk havbruksnæring År 2008. (only available in Norwegian). Accessed 29 April 2010.
  25. Dovers, S. R., Norton, T. W., & Handmer, J. W. (1996). Uncertainty, ecology, sustainability and policy. Biodiversity Conservation, 5, 1143–1167.CrossRefGoogle Scholar
  26. EFSA (2009). Scientific opinion of the panel on animal health and welfare on a request from European Commission on general approach to fish welfare and to the concept of sentience in fish. The EFSA Journal, 954, 1–26. Accessed 29 April 2010.
  27. Ellis, T., James, J. D., Stewart, C., & Scott, A. P. (2004). A non-invasive stress assay based upon measurement of free cortisol released into the water by rainbow trout. Journal of Fish Biology, 65, 1233–1252.CrossRefGoogle Scholar
  28. Etscheidt, J., & Manz, D. (1992). Suswasseraquaristik und tierarzliche Praxis. Teil 2: Untersuchungen zur artgerechten Haltung von Zierfuschen. Tierärztliche Praxis, 20, 221–226.Google Scholar
  29. Eurobarometer (2003) 58.0, 2nd edition, 21 March. A report to the Directorate General for the project ‘Life sciences in European society’ QLG7-CT-1999-00286.Google Scholar
  30. European Commission (2002). A strategy for the sustainable development of European aquaculture. European Commission, Brussels. Accessed 29 April 2010.
  31. FAO. (1992). Sustainable development and environment: FAO policies and actions, Stockholm 1972-Rio 1992. Rome: FAO.Google Scholar
  32. FAO (1995). Code of conduct on responsible fisheries. Fisheries and Aquaculture Department, Food and Agricultural Organisation of the United Nations, Rome. Accessed 29 April 2009.
  33. FAO (2003). Genetically modified organisms and aquaculture. FAO Fisheries Circular No. 989, Rome.Google Scholar
  34. Farbridge, K. J., Leatherland, J. F. (1992). Plasma growth-hormone levels in fed and fasted rainbow-trout (Oncorhynchus-mykiss) are decreased following handling stress. Fish Physiology and Biochemistry, 10, 67–73.CrossRefGoogle Scholar
  35. Felt, U.,& Wynne, B. (2007). Taking European Knowledge Society Seriously. European Communities, Directorate-General for Research Science, Economy and Society. 95 pp. Accessed 10 July 2009.
  36. Fevolden, S. E., Røed, K. H., & Fjalestad, K. T. (2002). Selection response of cortisol and lysozyme in rainbow trout and correlation to growth. Aquaculture, 205, 61–75.CrossRefGoogle Scholar
  37. Fleming, I. A., & Gross, M. R. (1992). Reproductive-behavior of hatchery and wild coho salmon (oncorhynchus-kisutch)—does it differ. Aquaculture, 103, 101–121.CrossRefGoogle Scholar
  38. Frankic, A., & Hershner, C. (2003). Sustainable aquaculture: Developing the promise of aquaculture. Aquaculture International, 11, 517–530.CrossRefGoogle Scholar
  39. Gillund, F.,& Myhr, A. I. (2010) Perspectives on Salmon feed—A deliberative assessment of several alternative feed resources. Journal of Agriculture and Environmental Ethics, Available online 28 Jan.Google Scholar
  40. Greer, D., & Harvey, B. (2004). Blue genes. sharing and conserving the world’s aquatic genetic resources (p. 231). London: Earthscan.Google Scholar
  41. Hægermark, W. Aa. (2009). Several advantages with purified feed oil. Accessed 29 April 2010.
  42. Hindar, K., & Jonsson, B. (1995). Impacts of aquaculture and hatcheries on wild fish. In D. P. Philipp, J. M. Epifanio, J. E. Marsden, & Claussen (Eds.), Protection of aquatic biodiversity. Proceedings of the World Fisheries Congress, Theme 3 (pp. 70–87). New Delhi: Oxford and IBH Publishing.Google Scholar
  43. Hites, R. A., Foran, J. A., Carpenter, D. O., Coreen Hamilton, M., Knuth, B. A., & Schwager, S. J. (2004). Global assessment of organic contaminants in farmed salmon. Science, 303, 226–229.CrossRefGoogle Scholar
  44. Holm, J. C., Tuene, S., Fosseidengen, J. E. (1998). Halibut behavior as a means of asssessing suitability of ongrowth systems. Annual Science Conference, ICES. Casias, Portugal 16–19 Sept.Google Scholar
  45. Holmenkollen Guidelines (1999). Holmekollen Guidelines for sustainable aquaculture 1997. In: N. Svennevig, H. Reinertsen, M. New (Eds.) Sustainable Aquaculture (pp. 343–347) Proceedings of the Second International Symposium on Sustainable Aquaculture: Food for the future? November 2–5, 1997, Oslo, Norway: AA. Balkema, Rotterdam/Brookfield.Google Scholar
  46. Huntingford, F. A., Adams, C., Braithwaite, V. A., Kadri, S., Pottinger, T. G., Sandøe, P., et al. (2006). Current issues in fish welfare. Journal of Fish Biology, 68, 332–372.CrossRefGoogle Scholar
  47. Johnsson, J. I., Petersson, E., Joensson, E., Bjoernsson, B. T., & Jaervi, T. (1996). Domestication and growth hormone alter antipredator behavior and growth patterns in juvenile brown trout, Salmo trutta. Canadian Journal of Fisheries and Aquatic Sciences, 53, 1546–1554.CrossRefGoogle Scholar
  48. Jonsson, B., Boxaspen, K., Fiske P., Gjerde, B., Poppe, T., Wennevik, V. (2006). Interaksjoner mellom lakseoppdrett og villaks: Oppdatering av kunnskapen etter NOU 1999:9. Kunnskapsserien for laks og vannmiljø 2. pp. 80.Google Scholar
  49. Kamara, M., Coff, C., & Wynne, B. (2006). GMOs and sustainability: Contested visions, routes and drivers. Copenhagen: Report prepared for the Danish Council of Ethics.Google Scholar
  50. Kapuscinski, A. R., & Brister, D. J. (2001). Genetic impacts of aquaculture. In K. D. Black (Ed.), Environmental impacts of aquaculture (pp. 128–153). Sheffield, UK: Sheffield Academic press.Google Scholar
  51. Kjørstad, I. (2005). Welfare quality WP1.1 Consumers literature review country report Norway (p. 60). Oslo Norway: SIFO, National Institute for Consumer Research.Google Scholar
  52. Kolstad, K., Heuch, P. A., Gjerde, B., Gjedrem, T., & Salte, R. (2005). Genetic variation in resistance of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis. Aquaculture, 247, 145–151.CrossRefGoogle Scholar
  53. Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., et al. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience and Biobehavioral Reviews, 23, 925–935.CrossRefGoogle Scholar
  54. Kriebel, D., Tickner, J., Epstein, P., Lemons, J., Levins, R., Loechler, E. L., et al. (2001). The precautionary principle in environmental science. Environmental Health Perspectives, 109, 871–876.CrossRefGoogle Scholar
  55. Le Curieux–Belfond, O., Vandelac, L., Caron, J., & Seralini, G. E. (2009). Factors to consider before production and commercialization of aquatic genetically modified organisms: The case of transgenic salmon. Environmental Science and Policy, 12, 170–189.CrossRefGoogle Scholar
  56. LMD (2008) St.meld. nr. 12 (2002-2003) Om dyrehold og dyrevelferd. (only available in Norwegian). Accessed 28 April 2010.
  57. Lund, V., Mejdell, C., Röcklinsberg, H., Anthony, R., & Håstein, T. (2007). Expanding the moral circle: Farmed fish as objects of moral concern. Diseases of Aquatic Organisms, 75, 109–118.CrossRefGoogle Scholar
  58. Mazur, C. F., & Iwama, G. K. (1993). Effect of handling and stocking density on hematocrit, plasma-cortisol, and survival in wild and hatchery-reared chinook salmon (oncorhynchus-tshawytscha). Aquaculture, 112, 291–299.CrossRefGoogle Scholar
  59. McGinnity, P., Prodöhl, P., Ferguson, A., Hynes, R., Maoiléidigh, N., Baker, N., et al. (2003). Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society: Biological Sciences, 270, 2443–2450.CrossRefGoogle Scholar
  60. McGinnity, P., Stone, C., Taggart, J. B., Cooke, D., Cotter, D., Hynes, R., et al. (1997). Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES Journal of Marine Science, 54, 998–1008.Google Scholar
  61. McInerney, J. (2004). Animal Welfare, economics and policy. Report on a study for Defra. pp. 68.Google Scholar
  62. Melamed, P., Gong, Z., Fletcher, G., & Hew, C. L. (2002). The potential impact of modern biotechnology on fish aquaculture. Aquaculture, 204, 255–269.CrossRefGoogle Scholar
  63. Metcalfe, N. B., Valdimarsson, S. K., & Morgan, I. J. (2003). The relative roles of domestication, rearing environment prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon. Journal of Applied Ecology, 40, 535–544.CrossRefGoogle Scholar
  64. Moen, T., Baranski, M., Sonesson, A. K., & Kjøglum, S. (2009). Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): Population-level associations between markers and trait. BMC Genomics, 10, 368.CrossRefGoogle Scholar
  65. Muir, W. M., & Howard, R. D. (2001). Fitness component and ecological risk of transgenic release; A model using Japanese medaka (Oryzius latipes). American Naturalist, 159, 1–16.Google Scholar
  66. Muir, W. M., & Howard, R. D. (2002). Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproductive organisms. Transgenic Research, 11, 101–114.CrossRefGoogle Scholar
  67. Muir, W. M., Schinkel, A. (2002). Incorporation of competitive effects in breeding programs to improve productivity and animal well being. Proceedings from the 7th World Congress on genetics applied to livestock production. Montpellier, France, communication no. 14–07.Google Scholar
  68. Myhr, A. I., & Dalmo, R. A. (2005). Introduction of genetic engineering in aquaculture: Ecological and ethical implications for science and governance. Aquaculture, 250, 542–554.CrossRefGoogle Scholar
  69. Myhr, A. I., Rosendal, G. K. (2009). GMO Assessment in Norway as Compared to EU Procedures: Societal Utility and Sustainable Development. DN-Utredning 2009-2 Accessed 15 Jan 2009.
  70. Naylor, R. L., Goldberg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., et al. (2000). Effect of aquaculture on world fish supplies. Nature, 405, 1017–1024.CrossRefGoogle Scholar
  71. Nielsen, H. M., Christensen, L. G., & Groen, A. F. (2005). Derivation of sustainable breeding goals for dairy cattle using selection index theory. Journal of Dairy Science, 88, 1882–1890.CrossRefGoogle Scholar
  72. Nielsen, H. M., Christensen, L. G., & Ødegård, J. (2006). A method to define breeding goals for sustainable dairy cattle production. Journal of Dairy Science, 89, 3615–3625.CrossRefGoogle Scholar
  73. Niiler, E. (2000). FOA researchers consider first transgenic fish. Nature Biotechnology, 18, 143.CrossRefGoogle Scholar
  74. Noiville, C., (1999). Farm animal breeding and the law. In: A.M. Neeteson-van Nieuwenhoven (Ed.), The future developments in farm animal breeding and reproduction and their ethical, legal and consumer implications (pp 91–100). Report EC-ELSA project 4th Framwork Programme for RTD Nov 1999.Google Scholar
  75. Norwegian Ministry of Fisheries and Costal Affairs (2009). Strategi for en miljømessig bærekraftig havbruksnæring. (Only available in Norwegian).…strategier…/strategi-for-en-miljomessig-barekraftig-.html. Accessed 10 July 2009.
  76. O’Connor, K. I., Metcalf, N. B., & Taylor, A. C. (2000). The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. Journal of Fish Biology, 57, 41–51.CrossRefGoogle Scholar
  77. Olesen, I., Alfnes, F., Røra, M., Navrud, S., & Kolstad, K. (2010). Eliciting consumers’ willingness to pay for organic and welfare labelled salon by a non-hypothetical choice experiment. Livestock Science, 127, 218–226.CrossRefGoogle Scholar
  78. Olesen, I., Groen, A. F., & Gjerde, B. (2000). Definition of animal breeding goals for sustainable production systems. Journal of Animal Science, 78, 570–582.Google Scholar
  79. Olesen, I., Navrud, S., Kolstad, K. (2006). Economic values of animal welfare in breeding goals. Invited paper. Proceedings from the 8th World Congress on genetics applied to livestock production. August 13–18, 2006, Belo Horizonte, MG, Brasil CD-ROM: 538-1710.pdf.Google Scholar
  80. Olesen, I., Rosendal, G. K., Walløe Tvedt, M., Bryde, M, Bentsen, H. B. (2007). Access to and protection of aquaculture genetic resources—strategies and regulations. Aquaculture, 272S1, 47–61.Google Scholar
  81. Ouédraogo, A. (2003). Symbolic goods in the market place. Public perceptions of farm animal breeding and reproduction in France and the United Kingdom. In A. E. Liinamo, A. M. Neeteson-van Nieuwenhoven (Eds). SEFABAR Sustainable European farm animal Breeding and reproduction. Final workshop, Rome, 4 sep 2003. pp. 36–46.Google Scholar
  82. Øverli, Ø., Harris, C. A., & Winberg, S. (1999). Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in Rainbow trout. Brain, Behavior and Evolution, 54, 263–275.CrossRefGoogle Scholar
  83. Øverli, Ø., Pottinger, T. G., Carrick, T. R., Øverli, E., & Winberg, S. (2001). Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. Brain, Behavior and Evolution, 57, 214–224.CrossRefGoogle Scholar
  84. Øverli, Ø., Sørensen, C., & Nilsson, G. E. (2006). Behavioral indicators of stress-coping style in rainbow trout: Do males and females react differently to novelty? Physiology & Behavior, 87, 506–512.CrossRefGoogle Scholar
  85. Øverli, Ø., Winberg, S., Damsgård, B., & Jobling, M. (1998). Food intake and spontaneous swimming activity in Arctic char (Salvelinus alpinus): Role of brain serotonergic activity and social interactions. Canadian Journal of Zoology, 76, 1366–1370.Google Scholar
  86. Øverli, Ø., Winberg, S., & Pottinger, T. G. (2005). Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout—a review. Integrative and Comparative Biology, 45, 463–474.CrossRefGoogle Scholar
  87. Petersson, E., & Järvi, T. (2006). Anti-predator response in wild and sea-ranched brown trout and their crosses. Aquaculture, 253, 218–228.CrossRefGoogle Scholar
  88. Pew Initiative on Food and Biotechnology (2003). Future fish: issues in science and regulation of transgenic fish. Washington, Pew Initiative on Food and Biotechnology. Accessed 5 July 2006.
  89. Pickering, A. D., & Pottinger, T. G. (1989). Stress responses and disease resistance in salmonid fish—effects of chronic elevation of plasma-cortisol. Fish Physiology and Biochemistry, 7, 253–258.CrossRefGoogle Scholar
  90. Pickering, A. D., Pottinger, T. G., Sumpter, J. P., Carragher, J. F., & Le Bail, P. Y. (1991). Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology, 83, 86–93.CrossRefGoogle Scholar
  91. Porter, R. J., Gallagher, P., Watson, S., & Young, A. H. (2004). Corticosteroid-serotonin interactions in depression: A review of the human evidence. Psychopharmacology, 173, 1–17.CrossRefGoogle Scholar
  92. Randall, A. (1987). Resource economics. New York: John Wiley & Son.Google Scholar
  93. Rauw, W. M., Kanis, E., Noordhuizen-Stassen, E. N., & Grommers, F. J. (1998). Undesirable side effects of selection for high production efficiency in farm animals. A review. Livestock Production Science, 56, 15–33.CrossRefGoogle Scholar
  94. Rosendal, G. K., Olesen, I., Bentsen, H. B., Walløe Tvedt, M., & Bryde, M. (2006). Access and legal protection of aquaculture genetic resources—Norwegian Perspectives. The Journal of World Intellectual Property, 9, 392–412.CrossRefGoogle Scholar
  95. Rutten, M. J. M., Bovenhuis, H., Komen, H., Bijma, P. (2006). Mixed model methodology to infer whether aggression increases due to selection on growth in aquaculture species. Proceedings from the 8th World Congress on genetics applied to livestock production August 13–18, 2006, Belo Horizonte, MG, Brasil. CD-ROM: 432-2143.pdf.Google Scholar
  96. Ruzzante, D. E. (1994). Domestication effects on aggressive and schooling behavior in fish. Aquaculture, 120, 1–24.CrossRefGoogle Scholar
  97. Rye, M. (2000). Bipatenter–mulige konsekvenser for genetisk foredlingsarbeid i akvakultur. In S. Rogne & O. J. Borge (Eds.), Biopatenter og EUs patentdirektiv. (only available in Norwegian). Rapport møte 29 September 2000 (pp. 26–27). Oslo: Bioteknologinemnda.Google Scholar
  98. Sandberg, K. I. (2009) International Health Policies. The Institutional Dimension of Global Child Immunization. PhD thesis. Faculty of Medicine, University of Oslo.Google Scholar
  99. Sohlberg, S., Mejdell, C., Ranheim, B., & Søli, N. E. (2004). Oppfatter fisk smerte, frykt og ubehag?: En litteraturgjennomgang. (only available in Norwegian). Norsk Veterinærtidsskrift, 116, 429–438.Google Scholar
  100. Suter, H. C., & Huntingford, F. A. (2002). Eye colour in juvenile Atlantic salmon: Effects of social status, aggression and foraging success. Journal of Fish Biology, 61, 606–614.CrossRefGoogle Scholar
  101. The Norwegian Government (2005). Plattform for regjeringssamarbeidet mellom Arbeiderpartiet, Sosialistisk Venstreparti og Senterpartiet 2005–09. 73 sider. (only available in Norwegian).
  102. Thompson, P. B., & Nardone, A. (1999). Sustainable livestock production: Methodological and ethical challenges. Production Science, 61, 111–119.Google Scholar
  103. Torp Donner, H., & Juga, J. (1997). Sustainability-a challenge to animal breeding. Agricultural and Food Science in Finland, 6, 229–239.Google Scholar
  104. Tufto, J. (2001). Effects of releasing maladapted individuals: A demographic-evolutionary model. American Naturalist, 158, 331–340.CrossRefGoogle Scholar
  105. Tuomisto, J. T., Tuomisto, J., Tainio, M., & Niittynen, M. (2004). Risk-benefit analysis of eating farmed salmon. Science, 305, 476.CrossRefGoogle Scholar
  106. Turnbull, J. F., Adams, C. E., Richards, R. H., & Robertson, D. A. (1998). Attack site and resultant damage during aggressive encounters in Atlantic salmon (Salmo salar L.) parr. Aquaculture, 159, 345–353.CrossRefGoogle Scholar
  107. Turner, J. W., Nemeth, R., & Rogers, C. (2003). Measurement of fecal glucocorticoids in parrotfishes to assess stress. General and Comparative Endocrinology, 133, 341–352.CrossRefGoogle Scholar
  108. Tvedt, Morten Walløe. (2005). Har noen eksklusive tinglige rettigheter til genetiske ressurser i Norge? (The Legal Situation Regarding Exclusive Rights to Genetic Resources in Norway). Retfærd, Nordisk juridisk tidsskrift, 109, 70–90. In Norwegian.Google Scholar
  109. Verspoor, E., Olesen, I., Bentsen, H. B., Glover, K., Mcginnity, P., Norris, A. (2007). Genetic effects of domestication, culture and breeding of fish and shellfish, and their impacts on wild populations. Atlantic salmon-Salmo salar. In T. Svåsand, D. Crosetti, E. García-Vázquez, E. Verspoor (Eds). Genetic impact of aquaculture activities on native populations. Genimpact final scientific report (EU contract RICA-CT-2005-022802). p. 23–31.Google Scholar
  110. WCED. (1987). Our common future. Oxford: Oxford University Press.Google Scholar
  111. Weyts, F. A. A., Cohen, N., Flik, G., & Verburgvan Kemenade, B. M. L. (1999). Interactions between the immune system and the hypothalamo-pituitary-interrenal axis in fish. Fish and Shellfish Immunology, 9, 1–20.CrossRefGoogle Scholar
  112. Winberg, S., Myrberg, A. A., & Nilsson, G. E. (1993). Predator exposure alters brain serotonin metabolism in bicolor damselfish. Neuroreport, 4, 399–402.CrossRefGoogle Scholar
  113. Winberg, S., Nilsson, G. E., & Olsén, K. H. (1991). Social rank and brain levels of monoamines and monoamine metabolites in Arctic charr, Salvelinus alpinus (L). Journal of Comparative Physiolology, A168, 241–246.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ingrid Olesen
    • 1
  • Anne Ingeborg Myhr
    • 2
  • G. Kristin Rosendal
    • 3
  1. 1.Nofima MarinÅsNorway
  2. 2.Genøk–Centre of BiosafetyTromsøNorway
  3. 3.Fridtjof Nansen InstituteLysakerNorway

Personalised recommendations