The case for regulating intragenic GMOs

Article

Abstract

This paper discusses the ethical and regulatory issues raised by “intragenics” – organisms that have been genetically modified using gene technologies, but that do not contain DNA from another species. Considering the rapid development of knowledge about gene regulation and genomics, we anticipate rapid advances in intragenic methods. Of regulatory systems developed to govern genetically modified organisms (GMOs) in North America, Europe, Australia, and New Zealand, the Australian system stands out in explicitly excluding intragenics from regulation. European systems are also under pressure to exclude intragenics from regulation. We evaluate recent arguments that intragenics are safer and more morally acceptable than transgenic organisms, and more acceptable to the public, which might be thought to justify a lower standard of regulation. We argue that the exemption of intragenics from regulation is not justified, and that there may be significant environmental risks associated with them. We conclude that intragenics should be subject to the same standard of regulation as other GMOs.

Keywords

consumers environment ethics genetically modified organisms intragenics nature regulation safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHIS (USDA Animal and Plant Health Inspection Service) (1992). Response to Calgene petition for determination of regulatory status, 1992, Petition no.92-196-01, USDAGoogle Scholar
  2. Baumgartner C. (2006). Exclusion by Inclusion? On Difficulties with Regard to an Effective Ethical Assessment of Patenting in the Field of Agricultural Bio-technology. Journal of Agricultural and Environmental Ethics, 19, 521–539CrossRefGoogle Scholar
  3. Bhattacharya, S. (2003). Glowing red GM fish to sell in US. NewScientist.com news service, 24 November 2003. Retrieved Jan 11, 2007, from http://www.newscientist.com/article.ns?id=dn4411
  4. Bodmer, W. (1992), “Patent Absurdity.” Science and Public Affairs, Summer, 3–4Google Scholar
  5. Brown N., M. Michael (2001). Transgenics, Uncertainty and Public Credibility. Transgenic Research 10, 279–283CrossRefGoogle Scholar
  6. Bruce D. M. (2002). A Social Contract for Biotechnology: Shared Visions for Risky Technologies? Journal of Agricultural and Environmental Ethics, 15, 279–289CrossRefGoogle Scholar
  7. Buiatii M. (2005). Biologies, Agricultures, Biotechnologies. Tailoring Biotechnologies, 1(2), 9–30Google Scholar
  8. Burrows B. (2001). Safety First. In B. Tokar (ed.), Redesigning Life? The Worldwide Challenge to Genetic Engineering. London: Zed BooksGoogle Scholar
  9. Busch L. (2002). The Homiletics of Risk. Journal of Agricultural and Environmental Ethics, 15, 17–29CrossRefGoogle Scholar
  10. Carman J. (2004). Is GM Food Safe to Eat? In R. Hindmarsh, G. Lawrence (eds.), Recoding Nature: Critical Perspectives on Genetic Engineering. Sydney: UNSW PressGoogle Scholar
  11. Castrillo L. A., R. E. Lee, J. A. Wyman, M. R. Lee, S. T. Rutherford (2001). Field Persistence of Ice-nucleating Bacteria in Overwintering Colorado Potato Beetles. Biological Control, 21(1), 11–18CrossRefGoogle Scholar
  12. CFIA (Canadian Food Inspection Agency) (2004). Updated Directive 94-08 (Dir94-08) Assessment Criteria for Determining Environmental Safety of Plants With Novel Traits. Ottawa: CFIAGoogle Scholar
  13. Cohen J. I. (2001). Harnessing Biotechnology for the Poor: Challenges Ahead for Capacity, Safety and Public Investment. Journal of Human Development, 2(2), 239–263CrossRefGoogle Scholar
  14. Conner, A. J., and J. M. E. Jacobs “GM Plants Without Foreign DNA: Implications from New Approaches in Vector Development,” in Proceedings of the Ninth International Symposium on the Biosafety of Genetic Modified Organisms: Biosafety Research and Environmental Risk Assessment (Jeju Island, Korea, 2006) September 24–29, pp. 195–201Google Scholar
  15. Cormick C. (2003). Perceptions of Risk Relating to Biotechnology in Australia. International Journal of Biotechnology 5(2), 95–104Google Scholar
  16. Crouch M. L. (2001). From Golden Rice to Terminator Technology: Agricultural Biotechnology Will Not Feed the World or Save the Environment. In B. Tokar (ed.), Redesigning Life? The Worldwide Challenge to Genetic Engineering. London: Zed BooksGoogle Scholar
  17. Dall, D. and G. Neumann, Daughterless Carp: An Analysis of Legal, Technical and Other Risks to Delivery. A report to the Pest Animal Control CRC (Canberra, 2004)Google Scholar
  18. Davidson S. (2002). Carp Crusades. ECOS, 112, 8–12Google Scholar
  19. De Cock Buning T., E. T. Lammerts van Bueren, M. A. Haring, H. C. De Vriend, P. C. Struik (2006). Correspondence. Nature Biotechnology, 24(11), 1329–1331CrossRefGoogle Scholar
  20. Dennis C. (2002). Gene Regulation: The Brave New World of RNA. Nature, 418, 122–124CrossRefGoogle Scholar
  21. Devlin R. H., T. Y. Yesaki, C. A. Biagi, E. M. Donaldson, P. Swanson, W. K. Chan (1994). Extraordinary Salmon Growth. Nature, 371, 209–210CrossRefGoogle Scholar
  22. Devlin R. H., C. A. Biagi, T. Y. Yesaki (2004). Growth, Viability and Genetic Characteristics of GH Transgenic Coho Salmon Strains. Aquaculture, 236, 607–632CrossRefGoogle Scholar
  23. Devlin R. H., L. F. Sundström, W. M. Muir (2006). Interface of Biotechnology and Ecology for Environmental Risk Assessments of Transgenic Fish. Trends in Biotechnology, 24(2), 89–97CrossRefGoogle Scholar
  24. Dick, A. (2004), “Sons, No Daughters,” The Land 12, 32Google Scholar
  25. European Parliament, “Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of GMOs and repealing Council Directive 90/220/EEC,” Offical Journal of European Community L106 (2001), 1–38Google Scholar
  26. EU SCP (European Union Scientific Committee on Plants) (1998). Opinion of the Scientific Committee on Plants Regarding Submission for Placing on the Market under Directive 90/220/EEC of Genetically Modified Processing Tomato Line TGT7F Notified by Zeneca. Notification C/ES/96/01 [available at http://ec.europa.eu/food/fs/sc/scp/out19_en.html, accessed 9 Jan 07]Google Scholar
  27. Ferrara J., M. K. Dorsey (2001). Genetically Engineered Foods: A Minefield of Safety Hazards. In B. Tokar (ed.), Redesigning Life? The Worldwide Challenge to Genetic Engineering. London: Zed BooksGoogle Scholar
  28. Giddings L. V. (2006). Correspondence. Nature Biotechnology, 24(11), 1329CrossRefGoogle Scholar
  29. Groot A. T., M. Dicke (2002). Insect-resistant Transgenic Plants in a Multi-trophic Context. The Plant Journal, 31(4), 387–406CrossRefGoogle Scholar
  30. Hallerman, E. M. (2004), “GloFish, the first GM animal commercialized: profits amid controversy.” ISB News Report, June 2004Google Scholar
  31. Hallerman E. M., E. McLean, I. A. Fleming (2007). Effects of Growth Hormone Transgenes on the Behaviour and Welfare of Aquacultured Fishes: A Review Identifying Research Needs. Applied Animal Behaviour Science, 104(3–4), 265–294CrossRefGoogle Scholar
  32. Hoedemaekers R. (2001). Commercialisation, Patents and Moral Assessment of Biotechnology Products. Journal of Medicine and Philosophy, 26(3), 273–284CrossRefGoogle Scholar
  33. Jacobsen E., H. J. Schouten (2007). Cisgenesis Strongly Improves Introgression Breeding and Induced Translocation Breeding of Plants. Trends in biotechnology, 25(5), 219–223CrossRefGoogle Scholar
  34. Jasanoff S. (1995). Product, Process, or Programme: Three Cultures and the Regulation of Biotechnology. In M. Bauer (ed.), Resistance to New Technology. Cambridge: Cambridge University PressGoogle Scholar
  35. Jefferson R. A. (2001). Trancending Transgenics: Are There Babies in the Bathwater, or is That a Dorsal Fin? In P. G. Pardey (ed.), The Future of Food: Biotechnology Markets and Policies in an International Setting (pp. 75–95). Washington, DC: John Hopkins PressGoogle Scholar
  36. Jones D. A., M. H. Ryder, B. G. Clare, S. K. Farrand, A. Kerr (1988). Construction of a Tra- Deletion Mutant of pAgK84 to Safeguard the Biological Control of Crown Gall. Molecular and General Genetics, 212, 207–214CrossRefGoogle Scholar
  37. Kramer M., R. Sanders, H. Bolkan, C. Waters, R. E. Sheehy, W. R. Hiatt (1992). Postharvest Evalutation of Transgenic Tomatoes with Reduced Levels of Polygalacturonase: Processing, Firmness and Disease Resistance. Postharvest Biology and Technology, 1, 241–255CrossRefGoogle Scholar
  38. Krimsky S. (1991). Biotechnics in Society: The Rise of Industrial Genetics. New York: PraegerGoogle Scholar
  39. Lammerts Van Bueren E. T., H. Verhoog, M. Tiemens-Hulscher, P. C. Struik, M. Haring, (2007). Organic Agriculture Requires Process Rather Than Product Evaluation of Novel Breeding Techniques. NJAS Wageningen Journal of Life Sciences, 54, 401–412CrossRefGoogle Scholar
  40. Lehrman S. (1992). US Proposes Relaxing Rules on Trials of Biotech Crops. Nature, 360, 94Google Scholar
  41. Levidow L. (2005). Divergent Concepts of Sustainability: The Case of GM Crops. In G. Banse, I. Hronszky, G. Nelson (eds.), Rationality in an Uncertain World (pp. 133–144). Berlin: Edition SigmaGoogle Scholar
  42. Levidow L., A. Carr, R. von Schomberg, D. Wield (1996). Regulating Agricultural Biotechnology in Europe: Harmonisation Difficulties, Opportunities, Dilemmas. Science and Public Policy 23(3), 135–157Google Scholar
  43. Logar N., L. K. Pollock (2005). Transgenic Fish: Is a New Policy Framework Necessary for a New Technology? Environmental Science and Policy, 8, 17–27CrossRefGoogle Scholar
  44. Madsen K. H., P. B. Hom, J. Lassen, P. Sandoe, (2002). Ranking Genetically Modified Plants According to Familiarity. Journal of Agricultural and Environmental Ethics, 15, 267–278CrossRefGoogle Scholar
  45. Marsden, T. (In press). Agri-food Contestations in Rural Space: GM in its Regulatory Context. Geoforum. Available on-line at: doi:10.1016/j.geoforum.2006.11. 013Google Scholar
  46. McNally R., P. Wheale (1996). Biopatenting and Biodiversity: Comparative Advantages in the New Global Order. The Ecologist, 26(5), 222–228Google Scholar
  47. Millstone E., E. Brunner, S. Mayer (1999). Beyond ‹substantial equivalence’. Nature, 401, 525–526CrossRefGoogle Scholar
  48. Muir W. M., R. D. Howard (2004). Characterization of Environmental Risk of Genetically Engineered (GE) Organisms and Their Potential to Control Exotic Invasive Species. Aquatic Sciences 66, 414–420CrossRefGoogle Scholar
  49. Myskja, B. K., “Is there a moral difference between intragenic and transgenic modification of plants?” Paper presented at EurSafe 2004: 5th Congress of the European Society for Agricultural and Food Ethics (Katholieke Universiteit Leuven, Belgium, 2004)Google Scholar
  50. Myskja B. K. (2006). The Moral Difference Between Intragenic and Transgenic Modification of Plants. Journal of Agricultural and Environmental Ethics 19, 225–238CrossRefGoogle Scholar
  51. Nam Y. K., J. K. Noh, Y. S. Cho, H. J. Cho, K.-N. Cho, C. G. Kim, D. S. Kim (2001). Dramatically Accelerated Growth and Extraordinary Gigantism of Transgenic Mud Loach Misgurnus mizolepis. Transgenic Research 10, 353–362CrossRefGoogle Scholar
  52. Nam Y. K., I.-S. Park, D. S. Kim (2004). Triploid Hybridization of Fast-Growing Transgenic Mud Loach Misgurnus mizolepis Male to Cyprinid Loach Misgurnus anguillicaudatus Female: The First Performance Study on Growth and Reproduction of Transgenic Polyploid Hybrid Fish. Aquaculture 231, 559–572CrossRefGoogle Scholar
  53. Nelkin D. (2002). Patenting Genes and the Public Interest. American Journal of Bioethics, 2(3), 13–14CrossRefGoogle Scholar
  54. Nielsen K. M. (2003). Transgenic Organisms – Time for Conceptual Diversification? Nature Biotechnology 21, 227–228CrossRefGoogle Scholar
  55. Noble D. (2006). The Music of Life: Biology Beyond the Genome. Oxford: Oxford University PressGoogle Scholar
  56. OECD (Organisation for Economic Co-operation, Development) (1993). Safety considerations for biotechnology: scale-up of crop plants. Paris: OECDGoogle Scholar
  57. O’Neill, G. (2004), “Silence of the Genes.” Australian Life Scientist Oct/Nov 2004, 12–14Google Scholar
  58. Orser, C. S., R. Lotstein, B. J. Staskawicz, D. Dahlbeck, E. Lahue, D. K. Willis, S. E. Lindow, and N. J. Panopoulos, “Molecular Genetics of Bacterial Ice Nucleation.” In Proceedings of the 2nd Working Group on Pseudomonas Syringae Pathovars (The Hellenic Phytophathological Society, Athens, 1984)Google Scholar
  59. Piller C. (1986). From Ice-nine to Ice-minus; Regulating Altered Genes. The Nation, 243, 400–402Google Scholar
  60. Pollan M. (2003). The Botany of Desire: A Plant’s Eye View of the World. London: BloomsburyGoogle Scholar
  61. Rhein, R. Jr “‹Ice-minus’ May End Killer Frosts – And Stop the Rain...” Business Week, Nov 25, 1985, 42–43Google Scholar
  62. Rommens C. M. (2004). All-native DNA Transformation: A New Approach to Plant Genetic Engineering. TRENDS in Plant Science 9(9), 457–464CrossRefGoogle Scholar
  63. Rommens C. M., J. M. Humara, J. Ye, H. Yan, C. Richael, L. Zhang, R. Perry, K. Swords (2004). Crop Improvement Through Modification of the Plant’s own Genome. Plant Physiology, 135, 421–431CrossRefGoogle Scholar
  64. Russell A. W. (2001). Gene Technology in R&D Provision to the Australian Sugar Industry: Sweetening up Public Research? Rural Society, 11(3), 163–180Google Scholar
  65. Russell, A. W., “GMOs and Their Contexts: A Comparison of Potential and Actual Performance of GM Crops in a Local Agricultural Setting.” Geoforum. Available on-line at: doi:10.1016/j.geoforum.2007.04.001Google Scholar
  66. Sagoff M. (2002). Intellectual Property and Products of Nature. American Journal of Bioethics, 2(3), 12–13CrossRefGoogle Scholar
  67. Schmitz S. A. (2001). Cloning Profits: The Revolution in Agricultural Biotechnology. In B. Tokar (ed.), Redesigning Life? The Worldwide Challenge to Genetic Engineering. London: Zed BooksGoogle Scholar
  68. Schouten H. J., F. A. Krens, E. Jacobsen (2006a). Cisgenic Plants are Similar to Traditionally Bred Plants. EMBO Reports 7(7), 750–753CrossRefGoogle Scholar
  69. Schouten H. J., F. A. Krens, E. Jacobsen (2006b). Do Cisgenic Plants Warrant Less Stringent Oversight? Nature Biotechnology 24(7), 753CrossRefGoogle Scholar
  70. Schouten H. J., F. A. Krens, E. Jacobsen (2006c). Correspondence: Schouten and Colleagues Respond. Nature Biotechnology 24(11), 1331–1333CrossRefGoogle Scholar
  71. Schubert D. (2002). A Different Perspective on GM Food. Nature Biotechnology, 20(10), 969CrossRefGoogle Scholar
  72. Schubert D., D. Williams (2006). Correspondance. Nature Biotechnology 24(11), 1327–1328CrossRefGoogle Scholar
  73. Seralini G. E., D. Cellier, J. S. de Vendomois (2007). New Analysis of a Rat Feeding Study with a Genetically Modified Maize Reveals Signs of Hepatorenal Toxicity. Archives of Environmental Contamination and Toxicology, 52(4), 596–602CrossRefGoogle Scholar
  74. Shiva V. (1997). Biopiracy: The Plunder of Nature and Knowledge. Boston, MA: South End PressGoogle Scholar
  75. Shohet S. (1996). Biotechnology in Europe: Contentions in the Risk-Regulation Debate. Science and Public Policy, 23(2), 117–122Google Scholar
  76. Snow A. (2003). Unnatural Selection. Nature 424, 619CrossRefGoogle Scholar
  77. Stephenson J. R., A. Warnes (1996). Release of Genetically Modified Micro-organisms into the Environment. Journal of Chemical Technology and Biotechnology, 65, 5–14CrossRefGoogle Scholar
  78. Stotzky G. (2000). Persistence and Biological Activity in Soil of Insecticidal Proteins from Bacillus thuringiensis and of Bacterila DNA Bound on Clays and Humin acids. Journal of Environmental Quality, 29(3), 691–705CrossRefGoogle Scholar
  79. Timbs, S., K. Adams, and W. M. Rogers (2006) Statutory Review of the Gene Technology Act 2000 and The Gene Technology Agreement. Retrieved 23 Mar, 2007 from: http://www.health.gov.au/internet/wcms/publishing.nsf/Content/gtreview-report.htm
  80. Tokar B. (2001). Redesigning Life? The Worldwide Challenge to Genetic Engineering. London: Zed BooksGoogle Scholar
  81. van den Eede G., H.-J. Aarts, H. Buhk, G. Corthier, H. J. Flint, W. Hammes, B. Jacobsen, T. Midtvedt, J. van der Vossen, A. von Wright, W. Wackernagel, A. Wilcks (2004) The Relevance of Gene Transfer to the Safety of Food and Feed Derived from Genetically Modified (GM) Plants. Food and Chemical Toxicology, 42, 1127–1156CrossRefGoogle Scholar
  82. Wright S. (1994). Molecular Politics: Developing American and British regulatory Policy for Genetic Engineering, 1972–1982. Chicago: University of Chicago PressGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of WollongongWollongongAustralia
  2. 2.Departmental Visitor, Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralia
  3. 3.School of Philosophy and BioethicsMonash UniversityClaytonAustralia
  4. 4.Honorary Research Fellow, Centre for Applied Philosophy and Public EthicsUniversity of MelbourneMelbourneAustralia

Personalised recommendations