Skip to main content
Log in

Basic Principles of Quantitative EEG

  • Published:
Journal of Adult Development Aims and scope Submit manuscript

Abstract

Principles of quantitative electroencephalography (EEG) relevant to neurotherapy are reviewed. A brief history of EEG, the general properties of human EEG, and the issues and obstacles associated with quantitative methods are discussed. Fourier analysis is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, E. D., & Matthews, B. H. C. (1934). The Berger rhythm: Potential changes from the occipital lobes in man. Brain, 57, 355–385.

    Google Scholar 

  • Andersen, P., & Andersson, S. A. (1968). Physiological basis of the alpha rhythm. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Baker, G., & Franken, R. (1967). Effects of stimulus size, brightness and complexity on EEG desynchronization. Psychonomic Science, 7, 289–290.

    Google Scholar 

  • Begley, S. (1992, April 20). Mapping the brain. Newsweek, p. 66.

  • Berger, H. (1929). On the Electroencephalogram of Man. Journal fur Psychologie und Neurologie, 40, 160–179.

    Google Scholar 

  • Bohdanecky, Z., Indra, M., Lansky, P., & Radil-Weiss, T. (1984). Alternation of EEG alpha and non-alpha periods does not differ in open and closed eye condition in darkness. Acta Neurobiology Experimental, 44, 230–232.

    Google Scholar 

  • Boiten, F., Sergeant, J., & Geuze, R. (1992). Event-related desynchronization: The effects of energetic and computational demands. Electroencephalography and Clinical Neurophysiology, 82, 302–309.

    Article  PubMed  Google Scholar 

  • Brazier, M. A. B., Cobb, W. A., Fischgold, H., Gastaut, H., Gloor, P., Hess, R., et al. (1961). Preliminary proposal for an EEG terminology by the Terminology Committee of the International Federation for Electroencephalography and Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology, 13, 646–650.

    Article  PubMed  Google Scholar 

  • Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex fourier series. Mathematics of Computation, 19, 297–301.

  • Dietsch, G. (1932). Fourier-analyse von elektrencephalogrammen des menschen. Pfluger Archiv Physiologie, 230, 106–112.

    Google Scholar 

  • Etevenon, P. (1986). Applications and perspectives of EEG cartography. In F. H. Duffy (Ed.), Topographic mapping of brain electrical activity (pp. 113–141). Boston: Butterworths.

    Google Scholar 

  • Freeman, W. J. (1975). Mass action in the nervous system. New York: Academic Press.

    Google Scholar 

  • Gale, A., & Edwards, J. (1983). The EEG and human behavior. In E. Gale & C. A. Edwards (Eds.), Physiological correlates of human behavior (pp. 99–127). London: Academic Press.

    Google Scholar 

  • Gevins, A. S. (1984). Analysis of the electromagnetic signals of the human brain: Milestones, obstacles, and goals. IEEE Transactions of Biomedical Engineering, 31, 833–850.

    Article  Google Scholar 

  • Gibbs, F. A., Gibbs, E. L., & Lennox, W. G. (1937). Epilepsy: A paroxysmal cerebral dysrhythmia. Brain, 60, 377–388.

    Google Scholar 

  • Hughes, J. R., & John, E. R. (1999). Conventional and quantitative electroencephalography in psychiatry. Journal of Neuropsychiatry and Clinical Neuroscience, 11, 190–208.

    Google Scholar 

  • Johnson, K. O., Hsiao, S. S., & Blake, D. T. (1996). Linearity as the basic law of psychophysics: Evidence from studies of the neural mechanisms of roughness magnitude estimation. In O. Franzén, R. S. Johansson, & L. Terenius (Eds.), Somesthesis and the neurobiology of the somatosensory cortex (pp. 213–228). Basel: Birkhäuser Verlag.

    Google Scholar 

  • Jones, F. W., & Holmes, D. S. (1976). Alcoholism, alpha production, and biofeedback. Journal of Consulting and Clinical Psychology, 44, 224–228.

    PubMed  Google Scholar 

  • Kaiser, D. A. (2001a). QEEG: State of the art, or state of confusion. Journal of Neurotherapy, 4, 57–75.

    Google Scholar 

  • Kaiser, D. A. (2001b). Rethinking standard bands. Journal of Neurotherapy, 5, 87–96.

    Google Scholar 

  • Loomis, A. L., Harvey, E. N., & Hobart, G. A. (1935). Potential rhythms of the cerebral cortex during sleep. Science, 81, 597–598.

    PubMed  Google Scholar 

  • Lorig, T. S., & Schwartz, G. (1989). Factor analysis of the EEG indicates inconsistencies in traditional frequency bands. Journal of Psychophysiology, 3, 369–375.

    Google Scholar 

  • Meijs, J. W., Bosch, F. G., Peters, M. J., & Lopes da Silva, F. H. (1987). On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head. Electroencephalography and Clinical Neurophysiology, 66, 286–298.

    Article  PubMed  Google Scholar 

  • Millett, D. (2001). Hans Berger: From psychic energy to the EEG. Perspectives in Biology and Medicine, 44, 522–542.

    PubMed  Google Scholar 

  • Mountcastle, V. B. (1978). An organizing principle for cerebral function. In G. M. Edelman & V. B. Mountcastle (Eds.), The mindful brain (pp. 7–50). MIT Press: Cambridge (MA).

    Google Scholar 

  • Nunez, P. L. (1981). Electric fields of the brain: The neurophysics of EEG. New York: Oxford University Press.

    Google Scholar 

  • Nuwer, M. R. (1988). Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping. Journal of Clinical Neurophysiology, 5, 1–43.

    PubMed  Google Scholar 

  • Nuwer, M. R. (1997). Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology, 49, 277–292.

    Google Scholar 

  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G. (1986). Event-related desynchronization mapping: Visualization of cortical activation patterns. In F. H. Duffy (Ed.), Topographic mapping of brain electrical activity (pp. 99–111). Boston: Butterworths.

    Google Scholar 

  • Pfurtscheller, G. (1992). Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest. Electroencephalography and Clinical Neurophysiology, 83, 62–69.

    Article  PubMed  Google Scholar 

  • Remond, A., & Lairy, G. C. (1972). Handbook of EEG and clinical neurophysiology (pp. 6–161). Amsterdam: Elsevier.

    Google Scholar 

  • Steriade, M., Oakson, G., & Kitsikis, A. (1978). Firing rates and patterns of output and nonoutput cells in cortical areas 5 and 7 of cat during the sleep-waking cycle. Experimental Neurology, 60, 443–68.

    PubMed  Google Scholar 

  • Steriade, M., Gloor, P., Llinas, R. R., Lopes de Silva, F. H., & Mesulam, M. M. (1990). Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology, 76, 481–508.

  • Sterman, M. B. (2003). Comodulation analysis of transient pathology: The conductor in the disturbed brain. Society for the Advancement of Brain Analysis, Avalon CA, May 26–31.

  • Sterman, M. B., Kaiser, D. A., & Veigel, B. (1996). Spectral analysis of event-related EEG responses during recall: Visual, motor, and cognitive components. Brain Topography, 9, 21–30.

    Article  Google Scholar 

  • Sterman, M. B., & Kaiser, D. A. (2001). Comodulation: A new QEEG analysis metric for assessment of structural and functional disorders of the CNS. Journal of Neurotherapy, 4, 73–83.

    Google Scholar 

  • Thatcher, R. W., Moore, N., John, E. R., Duffy, F., Hughes, J. R., & Krieger, M. (1999). QEEG and traumatic brain injury: Rebuttal of the American Academy of Neurology 1997 report by the EEG and Clinical Neuroscience Society. Clinical Electroencephalography, 30, 94–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kaiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, D.A. Basic Principles of Quantitative EEG. J Adult Dev 12, 99–104 (2005). https://doi.org/10.1007/s10804-005-7025-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10804-005-7025-9

Keywords

Navigation