Advertisement

Autism Spectrum Disorder: Incidence and Time Trends Over Two Decades in a Population-Based Birth Cohort

  • Scott M. Myers
  • Robert G. Voigt
  • Robert C. Colligan
  • Amy L. Weaver
  • Curtis B. Storlie
  • Ruth E. Stoeckel
  • John D. Port
  • Slavica K. Katusic
Original Paper

Abstract

We retrospectively identified autism spectrum disorder (ASD) incident cases among 31,220 individuals in a population-based birth cohort based on signs and symptoms uniformly abstracted from medical and educational records. Inclusive and narrow research definitions of ASD (ASD-RI and ASD-RN, respectively) were explored, along with clinical diagnoses of ASD (ASD-C) obtained from the records. The incidence of ASD-RI, ASD-RN, and ASD-C increased significantly from 1985 to 1998, then ASD-RI and ASD-RN plateaued while the rate of ASD-C continued to increase during 1998–2004. The rising incidence of research-defined ASD may reflect improved recognition and documentation of ASD signs and symptoms. Although the frequency of threshold ASD symptoms stabilized, the rate of ASD-C continued to increase, narrowing the gap between clinical ascertainment and symptom documentation.

Keywords

Autism spectrum disorder Incidence Epidemiology Time trends 

Notes

Acknowledgments

The authors wish to acknowledge Dr. Leonard T. Kurland for his vision in initiating the Rochester Epidemiology Project and Dr. Robert C. Colligan for his insight, enthusiasm, and collegiality across his 47 years of research in developmental disabilities at the Mayo Clinic. We also thank study coordinators Ms. Candice Klein and Mr. Tom Bitz and other members of the team for data collection, Ms. Sondra Buehler for assistance in manuscript preparation, and Independent School District No. 535 for their cooperation and collaboration.

Author Contributions

SKK, SMM and RGV conceived of the study, participated in its design and coordination, supervised all aspects of the study and drafted the manuscript; RES, JDP, ALW, and CBS participated in the design and interpretation of the data; and CBS and ALW participated in the design of the study and performed the statistical analysis. All authors have read and approved the final manuscript.

Funding

This study was funded by research Grants from the National Institutes of Health, Public Health Service (MH093522 and AG034676).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Medical research involving human subjects includes research on identifiable human material or identifiable data. All procedures performed in studies involving human subjects were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

This retrospective study of medical records data did not involve any participant contact.

Supplementary material

10803_2018_3834_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 KB)
10803_2018_3834_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 12 KB)
10803_2018_3834_MOESM3_ESM.xlsx (137 kb)
Supplementary material 3 (XLSX 137 KB)
10803_2018_3834_MOESM4_ESM.docx (35 kb)
Supplementary material 4 (DOCX 35 KB)
10803_2018_3834_MOESM5_ESM.docx (212 kb)
Supplementary material 5 (DOCX 211 KB)
10803_2018_3834_MOESM6_ESM.docx (615 kb)
Supplementary material 6 (DOCX 615 KB)
10803_2018_3834_MOESM7_ESM.docx (14 kb)
Supplementary material 7 (DOCX 13 KB)
10803_2018_3834_MOESM8_ESM.docx (14 kb)
Supplementary material 8 (DOCX 13 KB)
10803_2018_3834_MOESM9_ESM.docx (14 kb)
Supplementary material 9 (DOCX 13 KB)
10803_2018_3834_MOESM10_ESM.docx (21 kb)
Supplementary material 10 (DOCX 20 KB)

References

  1. American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders. In Text Revision (DSM-IV-TR) (4th Edition). Washington, DC: American Psychiatric Publishing.Google Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, 5th Edn. VA: American Psychiatric Association.CrossRefGoogle Scholar
  3. Atladottir, H. O., Gyllenberg, D., Langridge, A., Sandin, S., Hansen, S. N., Leonard, H., et al. (2015). The increasing prevalence of reported diagnoses of childhood psychiatric disorders: A descriptive multinational comparison. European Child and Adolescent Psychiatry, 24(2), 173–183.  https://doi.org/10.1007/s00787-014-0553-8.CrossRefPubMedGoogle Scholar
  4. Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., et al. (2018). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillence Summaries, 67(6), 1–23.  https://doi.org/10.15585/mmwr.ss6706a1.CrossRefGoogle Scholar
  5. Baker, J. P. (2013). Autism at 70–redrawing the boundaries. New England Journal of Medicine, 369(12), 1089–1091.  https://doi.org/10.1056/NEJMp1306380.CrossRefPubMedGoogle Scholar
  6. Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Pankratz, V. S., Weaver, A. L., Weber, K. J., et al. (2002). How common is attention-deficit/hyperactivity disorder? Incidence in a population-based birth cohort in Rochester, Minn. Archives of Pediatrics and Adolescent Medicine, 156(3), 217–224.CrossRefPubMedGoogle Scholar
  7. Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). The incidence of autism in Olmsted County, Minnesota, 1976–1997: Results from a population-based study. Archives of Pediatrics and Adolescent Medicine, 159(1), 37–44.  https://doi.org/10.1001/archpedi.159.1.37.CrossRefPubMedGoogle Scholar
  8. Baxter, A. J., Brugha, T. S., Erskine, H. E., Scheurer, R. W., Vos, T., & Scott, J. G. (2015). The epidemiology and global burden of autism spectrum disorders. Psychological Medicine, 45(3), 601–613.  https://doi.org/10.1017/S003329171400172X.CrossRefPubMedGoogle Scholar
  9. Beighley, J. S., & Matson, J. L. (2014). Comparing social skills in children diagnosed with authism spectrum disorder according to the DSM-IV-TR and the DSM-5. Journal of Developmental and Physical Disabilities, 26(6), 689–701.CrossRefGoogle Scholar
  10. Beighley, J. S., Matson, J. L., Rieske, R. D., Jang, J., Cervantes, P. E., & Goldin, R. L. (2013). Comparing challenging behavior in children diagnosed with autism spectrum disorders according to the DSM-IV-TR and the proposed DSM-5. Developmental Neurorehabilitation, 16(6), 375–381.  https://doi.org/10.3109/17518423.2012.760119.CrossRefPubMedGoogle Scholar
  11. Bennett, M., & Goodall, E. (2016). A meta-analysis of DSM-5 autism diagnoses in relation to DSM-IV and DSM-IV-TR. Review Journal of Autism and Developmental Disorders, 3, 119–124.CrossRefGoogle Scholar
  12. Bent, C. A., Barbaro, J., & Dissanayake, C. (2017). Change in autism diagnoses prior to and following the introduction of DSM-5. Journal of Autism and Developmental Disorders, 47(1), 163–171.  https://doi.org/10.1007/s10803-016-2942-y.CrossRefPubMedGoogle Scholar
  13. Bishop, D. V., Whitehouse, A. J., Watt, H. J., & Line, E. A. (2008). Autism and diagnostic substitution: Evidence from a study of adults with a history of developmental language disorder. Devopmental Medicine and Child Neurology, 50(5), 341–345.  https://doi.org/10.1111/j.1469-8749.2008.02057.x.CrossRefGoogle Scholar
  14. Blumberg, S. J., Bramlett, M. D., Kogan, M. D., Schieve, L. A., Jones, J. R., & Lu, M. C. (2013). Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011–2012. National Health Statistics Reports, 65, 1–11.Google Scholar
  15. Brugha, T. S., McManus, S., Bankart, J., Scott, F., Purdon, S., Smith, J., et al. (2011). Epidemiology of autism spectrum disorders in adults in the community in England. Archives of General Psychiatry, 68(5), 459–465.  https://doi.org/10.1001/archgenpsychiatry.2011.38.CrossRefPubMedGoogle Scholar
  16. California Department of Developmental Services. (2007). Autistic spectrum disorders: Changes in the California caseload, an update: June 1987–June 2007. Sacramento: California Health and Human Services Agency, Department of Developmental Services.Google Scholar
  17. Christensen, D. L., Baio, J., Braun, K. V., Bilder, D., Charles, J., Constantino, J. N., et al. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveillance Summaries, 65(2), 1–23.CrossRefGoogle Scholar
  18. Clark, L. A., Cuthbert, B., Lewis-Fernandez, R., Narrow, W. E., & Reed, G. M. (2017). Three Approaches to understanding and classifying mental disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychological Science in the Public Interest, 18(2), 72–145.  https://doi.org/10.1177/1529100617727266.CrossRefPubMedGoogle Scholar
  19. Constantino, J. N. (2011). The quantitative nature of autistic social impairment. Pediatric Research, 69(5 Pt 2), 55R–62R.  https://doi.org/10.1203/PDR.0b013e318212ec6e.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60(5), 524–530.  https://doi.org/10.1001/archpsyc.60.5.524.CrossRefPubMedGoogle Scholar
  21. Coo, H., Ouellette-Kuntz, H., Lloyd, J. E., Kasmara, L., Holden, J. J., & Lewis, M. E. (2008). Trends in autism prevalence: Diagnostic substitution revisited. Journal of Autism and Developmental Disorders, 38(6), 1036–1046.  https://doi.org/10.1007/s10803-007-0478-x.CrossRefPubMedGoogle Scholar
  22. Davidovitch, M., Hemo, B., Manning-Courtney, P., & Fombonne, E. (2013). Prevalence and incidence of autism spectrum disorder in an Israeli population. Journal of Autism and Developmental Disorders, 43(4), 785–793.  https://doi.org/10.1007/s10803-012-1611-z.CrossRefPubMedGoogle Scholar
  23. DeVilbiss, E. A., & Lee, B. K. (2014). Brief report: Trends in US National autism awareness from 2004 to 2014: The impact of national autism awareness month. Journal of Autism and Developmental Disorders, 44(12), 3271–3273.  https://doi.org/10.1007/s10803-014-2160-4.CrossRefPubMedGoogle Scholar
  24. Elsabbagh, M., Divan, G., Koh, Y. J., Kim, Y. S., Kauchali, S., Marcin, C., et al. (2012). Global prevalence of autism and other pervasive developmental disorders. Autism Research, 5(3), 160–179.  https://doi.org/10.1002/aur.239.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fombonne, E. (2009). Epidemiology of pervasive developmental disorders. Pediatric Research, 65(6), 591–598.  https://doi.org/10.1203/PDR.0b013e31819e7203.CrossRefPubMedGoogle Scholar
  26. Frost, W. H. (1939). The age selection of mortality from tuberculosis in successive decades. American Journal of Hygiene, 30, 91–96.Google Scholar
  27. Hansen, S. N., Schendel, D. E., & Parner, E. T. (2015). Explaining the increase in the prevalence of autism spectrum disorders: The proportion attributable to changes in reporting practices. JAMA Pediatrics, 169(1), 56–62.  https://doi.org/10.1001/jamapediatrics.2014.1893.CrossRefGoogle Scholar
  28. Hennekens, C. H., & Buring, J. E. (1987a). Cohort studies. In S. L. Mayrent (Ed.), Epidemiology of Medicine. Boston/Toronto: Little, Brown and Company.Google Scholar
  29. Hennekens, C. H., & Buring, J. E. (1987b). Measures of disease frequency and association. In S. L. Mayrent (Ed.), Epidemiology in Medicine. Boston/Toronto: Little, Brown and Company.Google Scholar
  30. Hoffman, K., Weisskopf, M. G., Roberts, A. L., Raz, R., Hart, J. E., Lyall, K., et al. (2017). Geographic patterns of autism spectrum disorder among children of participants in Nurses’ Health Study II. American Journal of Epidemiology, 186(7), 834–842.  https://doi.org/10.1093/aje/kwx158.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hyman, S. E. (2010). The diagnosis of mental disorders: The problem of reification. Annual Review of Clinical Psychology, 6, 155–179.  https://doi.org/10.1146/annurev.clinpsy.3.022806.091532.CrossRefPubMedGoogle Scholar
  32. Idring, S., Lundberg, M., Sturm, H., Dalman, C., Gumpert, C., Rai, D., et al. (2015). Changes in prevalence of autism spectrum disorders in 2001–2011: Findings from the Stockholm youth cohort. Journal of Autism and Developmental Disorders, 45(6), 1766–1773.  https://doi.org/10.1007/s10803-014-2336-y.CrossRefPubMedGoogle Scholar
  33. Isaksen, J., Diseth, T. H., Schjolberg, S., & Skjeldal, O. H. (2012). Observed prevalence of autism spectrum disorders in two Norwegian counties. European Journal of Paediatric Neurology, 16(6), 592–598.  https://doi.org/10.1016/j.ejpn.2012.01.014.CrossRefPubMedGoogle Scholar
  34. Isaksen, J., Diseth, T. H., Schjolberg, S., & Skjeldal, O. H. (2013). Autism spectrum disorders—are they really epidemic? European Journal of Paediatric Neurology, 17(4), 327–333.  https://doi.org/10.1016/j.ejpn.2013.03.003.CrossRefPubMedGoogle Scholar
  35. Jensen, C. M., Steinhausen, H. C., & Lauritsen, M. B. (2014). Time trends over 16 years in incidence-rates of autism spectrum disorders across the lifespan based on nationwide Danish register data. Journal of Autism and Developmental Disorders, 44(8), 1808–1818.  https://doi.org/10.1007/s10803-014-2053-6.CrossRefPubMedGoogle Scholar
  36. Johnson, C. P., & Myers, S. M. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120(5), 1183–1215.  https://doi.org/10.1542/peds.2007-2361.CrossRefPubMedGoogle Scholar
  37. Kamio, Y., Inada, N., Moriwaki, A., Kuroda, M., Koyama, T., Tsujii, H., et al. (2013). Quantitative autistic traits ascertained in a national survey of 22 529 Japanese schoolchildren. Acta Psychiatrica Scandinavica, 128(1), 45–53.  https://doi.org/10.1111/acps.12034.CrossRefGoogle Scholar
  38. Katusic, S. K., Colligan, R. C., Barbaresi, W. J., Schaid, D. J., & Jacobsen, S. J. (1998). Potential influence of migration bias in birth cohort studies. Mayo Clinic Proceedings, 73(11), 1053–1061.  https://doi.org/10.4065/73.11.1053.CrossRefGoogle Scholar
  39. Katusic, S. K., Colligan, R. C., Barbaresi, W. J., Schaid, D. J., & Jacobsen, S. J. (2001). Incidence of reading disability in a population-based birth cohort, 1976–1982, Rochester, Minn. Mayo Clinic Proceedings, 76(11), 1081–1092.  https://doi.org/10.4065/76.11.1081.CrossRefGoogle Scholar
  40. Katusic, S. K., Colligan, R. C., Myers, S. M., Voigt, R. G., Yoshimasu, K., Stoeckel, R. E., et al. (2017). What can large population-based birth cohort study ask about past, present and future of children with disorders of development, learning, and behavior? Journal of Epidemiology and Community Health, 71(4), 410–416.  https://doi.org/10.1136/jech-2016-208482.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kawamura, Y., Takahashi, O., & Ishii, T. (2008). Reevaluating the incidence of pervasive developmental disorders: Impact of elevated rates of detection through implementation of an integrated system of screening in Toyota, Japan. Psychiatry and Clinical Neurosciences, 62(2), 152–159.  https://doi.org/10.1111/j.1440-1819.2008.01748.x.CrossRefPubMedGoogle Scholar
  42. Keyes, K. M., Susser, E., Cheslack-Postava, K., Fountain, C., Liu, K., & Bearman, P. S. (2012). Cohort effects explain the increase in autism diagnosis among children born from 1992 to 2003 in California. International Journal of Epidemiology, 41(2), 495–503.  https://doi.org/10.1093/ije/dyr193.CrossRefPubMedGoogle Scholar
  43. Kim, Y. S., Fombonne, E., Koh, Y. J., Kim, S. J., Cheon, K. A., & Leventhal, B. L. (2014). A comparison of DSM-IV pervasive developmental disorder and DSM-5 autism spectrum disorder prevalence in an epidemiologic sample. Journal of the American Academy of Child and Adolescent Psychiatry, 53(5), 500–508.  https://doi.org/10.1016/j.jaac.2013.12.021.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kim, Y. S., Leventhal, B. L., Koh, Y. J., Fombonne, E., Laska, E., Lim, E. C., et al. (2011). Prevalence of autism spectrum disorders in a total population sample. American Journal of Psychiatry, 168(9), 904–912.  https://doi.org/10.1176/appi.ajp.2011.10101532.CrossRefPubMedGoogle Scholar
  45. Kurland, L. T., Elveback, L. R., & Nobrega, F. T. (1970). Population studies in Rochester and Olmsted County, Minnesota, 1900–1968. In I. I. Kessler & M. I. Levin MI. (Eds.), The Community as an Epidemiologic Laboratory (pp. 47–70). Baltimore: John’s Hopkins University Press.Google Scholar
  46. Liddell, F. D. (1988). The development of cohort studies in epidemiology: A review. Journal of Clinical Epidemiology, 41(12), 1217–1237.CrossRefPubMedGoogle Scholar
  47. Lingren, T., Chen, P., Bochenek, J., Doshi-Velez, F., Manning-Courtney, P., Bickel, J., et al. (2016). Electronic health record based algorithm to identify patients with autism spectrum disorder. PloS One, 11(7), e0159621.  https://doi.org/10.1371/journal.pone.0159621.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liu, K. Y., King, M., & Bearman, P. S. (2010). Social influence and the autism epidemic. American Journal of Sociology, 115(5), 1387–1434.CrossRefGoogle Scholar
  49. Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., et al. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69(3), 306–313.  https://doi.org/10.1001/archgenpsychiatry.2011.148.CrossRefGoogle Scholar
  50. Lundstrom, S., Reichenberg, A., Anckarsater, H., Lichtenstein, P., & Gillberg, C. (2015). Autism phenotype versus registered diagnosis in Swedish children: Prevalence trends over 10 years in general population samples. BMJ. 350, h1961.  https://doi.org/10.1136/bmj.h1961.
  51. Maenner, M. J., Rice, C. E., Arneson, C. L., Cunniff, C., Schieve, L. A., Carpenter, L. A., et al. (2014). Potential impact of DSM-5 criteria on autism spectrum disorder prevalence estimates. JAMA Psychiatry, 71(3), 292–300.  https://doi.org/10.1001/jamapsychiatry.2013.3893.CrossRefPubMedPubMedCentralGoogle Scholar
  52. May, T., Sciberras, E., Brignell, A., & Williams, K. (2017). Autism spectrum disorder: Updated prevalence and comparison of two birth cohorts in a nationally representative Australian sample. British Medical Journal Open, 7(5), e015549.  https://doi.org/10.1136/bmjopen-2016-015549.CrossRefGoogle Scholar
  53. Mazumdar, S., Winter, A., Liu, K. Y., & Bearman, P. (2013). Spatial clusters of autism births and diagnoses point to contextual drivers of increased prevalence. Social Science and Medicine, 95, 87–96.  https://doi.org/10.1016/j.socscimed.2012.11.032.CrossRefPubMedGoogle Scholar
  54. Melton, L. J. 3rd (1996). History of the Rochester Epidemiology Project. Mayo Clinic Proceedings, 71(3), 266–274.  https://doi.org/10.1016/S0025-6196(11)63966-9.CrossRefGoogle Scholar
  55. Miller, J. S., Bilder, D., Farley, M., Coon, H., Pinborough-Zimmerman, J., Jenson, W., et al. (2013). Autism spectrum disorder reclassified: A second look at the 1980s Utah/UCLA Autism Epidemiologic Study. Journal of Autism and Developmental Disorders, 43(1), 200–210.  https://doi.org/10.1007/s10803-012-1566-0.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Møller, J., Syversveen, A. R., & Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scandinavian Journal of Statistics, Theory and Applications, 25(3), 451–482.CrossRefGoogle Scholar
  57. Myers, S. M., & Johnson, C. P. (2007). Management of children with autism spectrum disorders. Pediatrics, 120(5), 1162–1182.  https://doi.org/10.1542/peds.2007-2362.CrossRefPubMedGoogle Scholar
  58. Nassar, N., Dixon, G., Bourke, J., Bower, C., Glasson, E., de Klerk, N., et al. (2009). Autism spectrum disorders in young children: Effect of changes in diagnostic practices. International Journal of Epidemiology, 38(5), 1245–1254.  https://doi.org/10.1093/ije/dyp260.CrossRefPubMedGoogle Scholar
  59. Newschaffer, C. J., Falb, M. D., & Gurney, J. G. (2005). National autism prevalence trends from United States special education data. Pediatrics, 115(3), e277–e282.  https://doi.org/10.1542/peds.2004-1958.CrossRefPubMedGoogle Scholar
  60. Office of Autism Research Coordination (OARC) National Institute of Mental Health and Thomson Reuters, Inc., on behalf of the Interagency Autism Coordinating Committee (IACC). IACC/OARC Autism Spectrum Disorder Research Publications Analysis Report: The Global Landscape of Autism Research, July 2012. Retrieved from the Department of Health and Human Services Interagency Autism Coordinating Committee website. Retrieved September 19, 2018 http://iacc.hhs.gov/publiations-analysis/july2012/index.shtml.
  61. Palmer, N., Beam, A., Agniel, D., Eran, A., Manrai, A., Spettell, C., et al. (2017). Association of sex with recurrence of autism spectrum disorder among siblings. JAMA Pediatrics, 171(11), 1107–1112.  https://doi.org/10.1001/jamapediatrics.2017.2832.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Park, H. Y., Harwood, R. L., Yu, S. M., Kavanagh, L., & Lu, M. C. (2016). Autism and other developmental disabilities research programs of the Maternal and Child Health Bureau. Pediatrics, 137(Suppl 2), S61–S66.  https://doi.org/10.1542/peds.2015-2851C.CrossRefPubMedGoogle Scholar
  63. Pearce, N. (2012). Classification of epidemiological study designs. International Journal of Epidemiology, 41(2), 393–397.  https://doi.org/10.1093/ije/dys049.CrossRefPubMedGoogle Scholar
  64. Polyak, A., Kubina, R. M., & Girirajan, S. (2015). Comorbidity of intellectual disability confounds ascertainment of autism: Implications for genetic diagnosis. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 168(7), 600–608.  https://doi.org/10.1002/ajmg.b.32338.CrossRefGoogle Scholar
  65. Posserud, M. B., Lundervold, A. J., & Gillberg, C. (2006). Autistic features in a total population of 7-9-year-old children assessed by the ASSQ (Autism Spectrum Screening Questionnaire). Journal of Child Psychology and Psychiatry and Allied Disciplines, 47(2), 167–175.  https://doi.org/10.1111/j.1469-7610.2005.01462.x.CrossRefGoogle Scholar
  66. R Core Team (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  67. Raz, R., Weisskopf, M. G., Davidovitch, M., Pinto, O., & Levine, H. (2015). Differences in autism spectrum disorders incidence by sub-populations in Israel 1992–2009: A total population study. Journal of Autism and Developmental Disorders, 45(4), 1062–1069.  https://doi.org/10.1007/s10803-014-2262-z.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Reich, B. J., Storlie, C. B., & Bondell, H. D. (2009). Variable selection in Bayesian smoothing spline ANOVA models: Application to deterministic computer codes. Technometrics, 51(2), 110–120.  https://doi.org/10.1198/TECH.2009.0013.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rice, C. E., Rosanoff, M., Dawson, G., Durkin, M. S., Croen, L. A., Singer, A., et al. (2012). Evaluating changes in the prevalence of the Autism Spectrum Disorders (ASDs). Public Health Reviews, 34(2), 1–22.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rocca, W. A., Yawn, B. P., Sauver, St, Grossardt, J. L., B. R., & Melton, L. J. 3rd (2012). History of the Rochester Epidemiology Project: Half a century of medical records linkage in a US population. Mayo Clinic Proceedings, 87(12), 1202–1213.  https://doi.org/10.1016/j.mayocp.2012.08.012.CrossRefGoogle Scholar
  71. Saemundsen, E., Magnusson, P., Georgsdottir, I., Egilsson, E., & Rafnsson, V. (2013). Prevalence of autism spectrum disorders in an Icelandic birth cohort. British Medical Journal Open, 3(6), 1–6.  https://doi.org/10.1136/bmjopen-2013-002748.CrossRefGoogle Scholar
  72. Schieve, L. A., Rice, C., Yeargin-Allsopp, M., Boyle, C. A., Kogan, M. D., Drews, C., et al. (2012). Parent-reported prevalence of autism spectrum disorders in US-born children: An assessment of changes within birth cohorts from the 2003 to the 2007 National Survey of Children’s Health. Maternal and Child Health Journal, 16(Suppl 1), 151–157.  https://doi.org/10.1007/s10995-012-1004-0.CrossRefGoogle Scholar
  73. Smith, I. C., Reichow, B., & Volkmar, F. R. (2015). The effects of DSM-5 criteria on number of individuals diagnosed with autism spectrum disorder: A systematic review. Journal of Autism and Developmental Disorders, 45(8), 2541–2552.  https://doi.org/10.1007/s10803-015-2423-8.CrossRefPubMedGoogle Scholar
  74. St Sauver, J. L., Grossardt, B. R., Leibson, C. L., Yawn, B. P., Melton, L. J. 3rd, & Rocca, W. A. (2012a). Generalizability of epidemiological findings and public health decisions: An illustration from the Rochester Epidemiology Project. Mayo Clinic Proceedings, 87(2), 151–160.  https://doi.org/10.1016/j.mayocp.2011.11.009.CrossRefGoogle Scholar
  75. St Sauver, J. L., Grossardt, B. R., Yawn, B. P., Melton, L. J., Pankratz, J. J., Brue, S. M., et al. (2012b). Data resource profile: The Rochester Epidemiology Project (REP) medical records-linkage system. International Journal of Epidemiology, 41(6), 1614–1624.  https://doi.org/10.1093/ije/dys195.CrossRefPubMedPubMedCentralGoogle Scholar
  76. St Sauver, J. L., Grossardt, B. R., Yawn, B. P., Melton, L. J. 3rd, & Rocca, W. A. (2011). Use of a medical records linkage system to enumerate a dynamic population over time: The Rochester epidemiology project. American Journal of Epidemiology, 173(9), 1059–1068.  https://doi.org/10.1093/aje/kwq482.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Storlie, C. B., Reich, B. J., Helton, J. C., Swiler, L. P., & Sallaberry, C. J. (2013). Analysis of computationally demanding models with continuous and categorical inputs. Reliability Engineering System Safety, 113, 30–41.CrossRefGoogle Scholar
  78. Taylor, B., Jick, H., & Maclaughlin, D. (2013). Prevalence and incidence rates of autism in the UK: Time trend from 2004 to 2010 in children aged 8 years. British Medical Journal Open, 3(10), e003219.  https://doi.org/10.1136/bmjopen-2013-003219.CrossRefGoogle Scholar
  79. Whitehouse, A. J., Cooper, M. N., Bebbington, K., Alvares, G., Lin, A., Wray, J., et al. (2017). Evidence of a reduction over time in the behavioral severity of autistic disorder diagnoses. Autism Research, 10(1), 179–187.  https://doi.org/10.1002/aur.1740.CrossRefPubMedGoogle Scholar
  80. Wing, L., & Potter, D. (2002). The epidemiology of autistic spectrum disorders: Is the prevalence rising? Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 151–161.  https://doi.org/10.1002/mrdd.10029.CrossRefPubMedGoogle Scholar
  81. Xu, G., Strathearn, L., Liu, B., & Bao, W. (2018). Prevalence of autism spectrum disorder among US children and adolescents, 2014–2016. JAMA, 319(1), 81–82.  https://doi.org/10.1001/jama.2017.17812.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yeargin-Allsopp, M., Boyle, C., van Naarden-Braun, K., & Trevathan, E. (2008). The epidemiology of developmental disabilities. In P. J. Accardo (Ed.), Capute & Accardo’s neurodevelopmental disabilities in infancy and childhood, Third Edition: Volume I: Neurodevelopmental diagnosis and treatment (pp. 61–104). Baltimore: Paul H. Brookes Publishing Co.Google Scholar
  83. Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., & Blumberg, S. J. (2015). Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. National Health Statistics Report, 87, 1–20.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Scott M. Myers
    • 1
  • Robert G. Voigt
    • 2
  • Robert C. Colligan
    • 3
  • Amy L. Weaver
    • 4
  • Curtis B. Storlie
    • 4
  • Ruth E. Stoeckel
    • 5
  • John D. Port
    • 6
  • Slavica K. Katusic
    • 4
  1. 1.Geisinger Autism & Developmental Medicine InstituteLewisburgUSA
  2. 2.Meyer Center for Developmental PediatricsBaylor College of MedicineHoustonUSA
  3. 3.Department of Psychiatry and PsychologyMayo ClinicRochesterUSA
  4. 4.Department of Health Sciences ResearchMayo ClinicRochesterUSA
  5. 5.Division of Speech Pathology, Department of NeurologyMayo ClinicRochesterUSA
  6. 6.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations