Journal of Autism and Developmental Disorders

, Volume 49, Issue 1, pp 22–33 | Cite as

Interrupted Time Experience in Autism Spectrum Disorder: Empirical Evidence from Content Analysis

  • David VogelEmail author
  • Christine M. Falter-Wagner
  • Theresa Schoofs
  • Katharina Krämer
  • Christian Kupke
  • Kai Vogeley
Original Paper


Although the experience of time is of central relevance for psychopathology, qualitative approaches to study the inner experience of time have been largely neglected in autism research. We present results from qualitative data acquired from 26 adults with high functioning autism spectrum disorder (ASD). Employing inductive content analysis we identified a distinct pattern of interrupted time experience in ASD. Individuals with ASD seemed to implement structured and routine behavior by future planning to guarantee that the present passed uninterrupted. We reason that the success of corresponding compensatory mechanisms determines the development of distress and noticeable symptoms. Considering recent theories on Bayesian perceptual inference we relate the syndrome of interrupted time experience to the putative neuronal mechanisms underlying time experience.


Autism-spectrum-disorder Time experience Perceptual inference Psychopathology Content analysis 


Author Contributions

DV contributes to conceptualization, data curation, investigation, qualitative analysis, coding and intercoding, statistical analysis, writing—original draft, review and editing. CK contributes to conceptualization, resources, writing—review and editing. KV contributes to conceptualization, supervision, resources, writing—review and editing. KK contributes to coding and intercoding. TS contributes to coding and intercoding. CMF-W contributes to resources, writing—review and editing.

Compliance with Ethical Standards

Conflict of interest

Each author declares that he/she has no conflicts of interest.

Ethical Approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. Allman, M., & Falter, C. (2015). Abnormal timing and time perception in autism spectrum disorder? A review of the evidence. In A. Vatakis & M. Allman (eds.), Time distortions in mind—temporal processing in clinical populations (pp. 37–56). Leiden: Brill Academic Publishers.Google Scholar
  2. Allman, M. J. (2011). Deficits in temporal processing associated with autistic disorder. Frontiers in Integrative Neuroscience, 5, 2.Google Scholar
  3. Allman, M. J., & DeLeon, I. G. (2009). “No time like the present”: Time perception in autism. In A. C. Giordano (ed.) Causes and Risks for Autism. Hauppauge: Nova Science Publishers, Inc.Google Scholar
  4. Allman, M. J., DeLeon, I. G., & Wearden, J. H. (2011). Psychophysical assessment of timing in individuals with autism. American Journal on Intellectual and Developmental Disabilities, 116(2), 165–178.Google Scholar
  5. Allman, M. J., & Meck, W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135(3), 656–677.Google Scholar
  6. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Publishing.Google Scholar
  7. Anderson, J. S., Nielsen, J. A., Froehlich, A. L., Dubray, M. B., Druzgal, T. J., Cariello, A. N., … Lainhart, J. E. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134, 3739–3751.Google Scholar
  8. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17.Google Scholar
  9. Bebko, J. M., Weiss, J. A., Demark, J. L., & Gomez, P. (2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47(1), 88–98.Google Scholar
  10. Bellini, S. (2004). Social skill deficits and anxiety in high-functioning adolescents with autism spectrum disorders. Focus on Autism and Other Developmental Disabilities, 19(2), 78–86.Google Scholar
  11. Botbol, M., Cabon, P., Kermarrec, S., & Tordjman, S. (2013). Biological and psychological rhythms: An integrative approach to rhythm disturbances in autistic disorder. Journal of Physiology Paris, 107(4), 298–309.Google Scholar
  12. Boucher, J. (2001). Time-parsing and autism. In C. Hoerl, T. McCormack (eds.) Time and memory: Issues in philosophy and psychology (pp. 111–135). Oxford: Oxford University Press.Google Scholar
  13. Boucher, J., Pons, F., Lind, S., & Williams, D. (2007). Temporal cognition in children with autistic spectrum disorders: tests of diachronic thinking. Journal of Autism and Developmental Disorders, 37(8), 1413–1429.Google Scholar
  14. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14(2), 209–224.Google Scholar
  15. Cassidy, S. A., Bradley, L., Bowen, E., Wigham, S., & Rodgers, J. (2018). Measurement properties of tools used to assess depression in adults with and without autism spectrum conditions: A systematic review. Autism Research, 11(5), 738–754.Google Scholar
  16. Csikszentmihályi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.Google Scholar
  17. Falter, C. M., Braeutigam, S., Nathan, R., Carrington, S., & Bailey, A. J. (2013). Enhanced access to early visual processing of perceptual simultaneity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(8), 1857–1866.Google Scholar
  18. Falter, C. M., Elliott, M. A., & Bailey, A. J. (2012b). Enhanced visual temporal resolution in autism spectrum disorders. PLoS ONE, 7(3), e32774.Google Scholar
  19. Falter, C. M., & Noreika, V. (2014). Time processing in developmental disorders: A comparative view. In Subjective time: The philosophy, psychology, and neuroscience of temporality. Cambridge: MIT Press.Google Scholar
  20. Falter, C. M., Noreika, V., Wearden, J. H., & Bailey, A. J. (2012a). More consistent, yet less sensitive: Interval timing in autism spectrum disorders. Quarterly Journal of Experimental Psychology, 65(11), 2093–2107.Google Scholar
  21. Fein, D., Barton, M., Eigsti, I. M., Kelley, E., Naigles, L., Schultz, R. T., … Tyson, K. (2013). Optimal outcome in individuals with a history of autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 54(2), 195–205.Google Scholar
  22. Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., & Wallace, M. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381–389.Google Scholar
  23. Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: The brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148–158.Google Scholar
  24. Fuchs, T. (2001). Melancholia as a desynchronization: Towards a psychopathology of interpersonal time. Psychopathology, 34, 179–186.Google Scholar
  25. Fuchs, T. (2005). Implicit and explicit temporality. Philosophy, Psychiatry, & Psychology, 12(3), 195–198.Google Scholar
  26. Fuchs, T. (2007). The temporal structure of intentionality and its disturbance in schizophrenia. Psychopathology, 40(4), 229–235.Google Scholar
  27. Fuchs, T. (2013). Temporality and psychopathology. Phenomenology and the Cognitive Sciences, 12(1), 75–104.Google Scholar
  28. Fuchs, T., & Van Duppen, Z. (2017). Time and events: On the phenomenology of temporal experience in schizophrenia (Ancillary Article to EAWE Domain 2). Psychopathology, 50(1), 68–74.Google Scholar
  29. Gallagher, S. (2010). Consciousness of time and the time of consciousness. Encyclopedia of Consciousness, 2010, 193–204.Google Scholar
  30. Gepner, B., & Féron, F. (2009). Autism: A world changing too fast for a mis-wired brain? Neuroscience and Biobehavioral Reviews, 33(8), 1227–1242.Google Scholar
  31. Gil, S., Chambres, P., Hyvert, C., Fanget, M., & Droit-volet, S. (2012). Children with autism spectrum disorders have “the working raw material” for time perception. PLoS ONE, 7(11), 1–10.Google Scholar
  32. Glaser, B., & Strauss, A. (2017). Discovery of grounded theory: Strategies for qualitative research. Abingdon: Routledge.Google Scholar
  33. Hautzinger, M., Bailer, M., Worall, H., & Keller, F. (1995). BDI: Beck-depressionsinventar. In Testhandbuch 2. überarbeitete Auflage. Bern: Verlag Hans Huber.Google Scholar
  34. Hayes, A. F., & Krippendorff, K. (2007). Answering the call for a standard reliability measure for coding data. Communication Methods and Measures, 1(1), 77–89.Google Scholar
  35. Hohwy, J., Paton, B., & Palmer, C. (2016). Distrusting the present. Phenomenology and the Cognitive Sciences, 15(3), 315–335.Google Scholar
  36. Joshi, G., Arnold Anteraper, S., Patil, K., Semwal, M., Goldin, R., Furtak, S., … Whitfield-Gabrieli, S. (2017). Integration and segregation of default mode network resting-state functional connectivity in transition-age males with high-functioning autism spectrum disorder: A proof of concept study. Brain Connectivity, 7(9), 558–573.Google Scholar
  37. Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Thousand Oaks: SAGE.Google Scholar
  38. Kupke, C. (2009). Der Begriff Zeit in der Psychopathologie. Berlin: Parodos Verlag.Google Scholar
  39. Kupke, C., & Vogeley, K. (2009). Constitution of cognition in time. In T. G. Baudson, A. Seemüller & M. Dresler (eds.), Chronobiology and chronopsychology (pp. 121–149). Lengerich: Pabst Science Publishers.Google Scholar
  40. Lepistö, T., Kujala, T., Vanhala, R., Alku, P., Huotilainen, M., & Näätänen, R. (2005). The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Research, 1066(1), 147–157.Google Scholar
  41. Lepistö, T., Silokallio, S., Nieminen-von Wendt, T., Alku, P., Näätänen, R., & Kujala, T. (2006). Auditory perception and attention as reflected by the brain event-related potentials in children with Asperger syndrome. Clinical Neurophysiology, 117(10), 2161–2171.Google Scholar
  42. Mason, M. (2010). Sample size and saturation in PhD studies using qualitative interviews. Forum Qualitative Sozialforschung/Forum Qualitative Social Research, 11(3), 1–19.Google Scholar
  43. Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software solution. Klagenfurt: Basic Procedures and Software Solution.Google Scholar
  44. Mölder, B. (2016). Time in intersubjectivity: Some Tools for Analysis. In B. Mölder, V. Arstilla, & P. Øhrstrøm (eds.). Philosophy and psychology of time. New York: Springer.Google Scholar
  45. Moore, J. W., Cambridge, V. C., Morgan, H., Giorlando, F., Adapa, R., & Fletcher, P. C. (2013). Time, action and psychosis: Using subjective time to investigate the effects of ketamine on sense of agency. Neuropsychologia, 51(2), 377–384.Google Scholar
  46. Moskalewicz, M. (2015a). Disturbed temporalities. Insights from phenomenological psychiatry. Time & Society, 25, 1–19.Google Scholar
  47. Moskalewicz, M. (2015b). Lived time disturbances of drug addiction therapy newcomers. A qualitative, field phenomenology case study at Monar-Markot Center in Poland. International Journal of Mental Health, 18(1), 3–20.Google Scholar
  48. Nicholas, B., Rudrasingham, V., Nash, S., Kirov, G., Owen, M. J., & Wimpory, D. C. (2007). Association of Per1 and Npas2 with autistic disorder: Support for the clock genes/social timing hypothesis. Molecular Psychiatry, 12(6), 581.Google Scholar
  49. Nielsen, M. (2017). ADHD and temporality: A desynchronized way of being in the World. Medical Anthropology: Cross Cultural Studies in Health and Illness, 36(3), 260–272.Google Scholar
  50. Noel, J. P., De Niear, M., Lazzara, N. S., & Wallace, M. T. (2017). Uncoupling between multisensory temporal function and non-verbal turn-taking in autism spectrum disorder. IEEE Transactions on Cognitive and Developmental Systems. Google Scholar
  51. Noel, J. P., Lytle, M., Cascio, C., & Wallace, M. T. (2018). Disrupted integration of exteroceptive and interoceptive signaling in autism spectrum disorder. Autism Research, 11(1), 194–205.Google Scholar
  52. Northoff, G. (2016a). How do resting state changes in depression translate into psychopathological symptoms? From “Spatiotemporal correspondence” to “Spatiotemporal Psychopathology. Current Opinion in Psychiatry, 29(1), 18–24.Google Scholar
  53. Northoff, G. (2016b). Spatiotemporal psychopathology I: No rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. Journal of Affective Disorders, 190, 854–866.Google Scholar
  54. Northoff, G., & Stanghellini, G. (2016). How to link brain and experience? Spatiotemporal psychopathology of the lived body. Frontiers in Human Neuroscience, 10, 76.Google Scholar
  55. Olivito, G., Clausi, S., Laghi, F., Tedesco, A. M., Baiocco, R., Mastropasqua, C., … Leggio, M. (2017). Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum, 16(2), 283–292.Google Scholar
  56. Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510.Google Scholar
  57. Petzschner, F. H., Weber, L. A. E., Gard, T., & Stephan, K. E. (2017). Computational psychosomatics and computational psychiatry: Toward a joint framework for differential diagnosis. Biological Psychiatry, 82(6), 421–430.Google Scholar
  58. Pope, C., Ziebland, S., & Mays, N. (2000). Qualitative research in health care: Analysing qualitative data. BMJ: British Medical Journal, 320, 114–116.Google Scholar
  59. Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63(2), 164–172.Google Scholar
  60. Sandelowski, M. (1995). Sample size in qualitative research. Research in Nursing & Health, 18(2), 179–183.Google Scholar
  61. Schmidt, K. H., & Metzler, P. (1992). Wortschatztest. Weinheim: WST. Beltz.Google Scholar
  62. Stanghellini, G., Ballerini, M., Presenza, S., Mancini, M., Northoff, G., & Cutting, J. (2017). Abnormal time experiences in major depression: An empirical qualitative study. Psychopathology, 50(2), 125–140.Google Scholar
  63. Stanghellini, G., Ballerini, M., Presenza, S., Mancini, M., Raballo, A., Blasi, S., & Cutting, J. (2016). Psychopathology of lived time: Abnormal time experience in persons with schizophrenia. Schizophrenia Bulletin, 42(1), 45–55.Google Scholar
  64. Thönes, S., & Oberfeld, D. (2015). Time perception in depression: A meta-analysis. Journal of Affective Disorders, 175, 359–372.Google Scholar
  65. Tordjman, S., Davlantis, K. S., Georgieff, N., Geoffray, M. M., Speranza, M., Anderson, G. M., … Vernay-Leconte, J. (2015). Autism as a disorder of biological and behavioral rhythms: Toward new therapeutic perspectives. Frontiers in Pediatrics, 3, 1.Google Scholar
  66. Trevarthen, C., & Daniel, S. (2005). Disorganized rhythm and synchrony: Early signs of autism and Rett syndrome. Brain and Development, 27, S25–S34.Google Scholar
  67. Varela, F. J. (1999). The specious present: A neurophenomenology of time consciousness. In J. Petitot, F. J. Varela, B. Pachoud & J.-M. Roy (eds.), Naturalizing phenomenology: Issues in contemporary phenomenology and cognitive science (pp. 266–329). Stanford: Stanford University Press.Google Scholar
  68. Vogel, D. H., Falter-Wagner, C. M., Schoofs, T., Krämer, K., Kupke, C., & Vogeley, K. (2018a). Flow and structure of time experience–concept, empirical validation and implications for psychopathology. Phenomenology and the Cognitive Sciences, 1–24.Google Scholar
  69. Vogel, D. H., Krämer, K., Schoofs, T., Kupke, C., & Vogeley, K. (2018b). Disturbed experience of time in depression—evidence from content analysis. Frontiers in Human Neuroscience, 12, 66.Google Scholar
  70. Vogeley, K., & Kupke, C. (2007). Disturbances of time consciousness from a phenomenological and a neuroscientific perspective. Schizophrenia Bulletin, 33(1), 157–165.Google Scholar
  71. Welsh, J. P., Ahn, E. S., & Placantonakis, D. G. (2005). Is autism due to brain desynchronization? International Journal of Developmental Neuroscience, 23(2), 253–263.Google Scholar
  72. Weng, S. J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., & Monk, C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Research, 1313, 202–214.Google Scholar
  73. Wimpory, D., Nicholas, B., & Nash, S. (2002). Social timing, clock genes and autism: A new hypothesis. Journal of Intellectual Disability Research, 46(4), 352–358.Google Scholar
  74. World Health Organization. (1992). The ICD-10 classification of mental and behavioral disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.Google Scholar
  75. Woynaroski, T. G., Kwakye, L. D., Foss-Feig, J. H., Stevenson, R. A., Stone, W. L., & Wallace, M. T. (2013). Multisensory speech perception in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(12), 2891–2902.Google Scholar
  76. Wyllie, M. (2005). Lived time and psychopathology. Philosophy, Psychiatry, & Psychology, 12(3), 173–185.Google Scholar
  77. Yin, B., Terhune, D. B., Smythies, J., & Meck, W. H. (2016). Claustrum, consciousness, and time perception. Current Opinion in Behavioral Sciences, 8, 258–267.Google Scholar
  78. Zukauskas, P. R., Silton, N., & Assumpção, F. B. Jr. (2009). Temporality and Asperger’s syndrome. Journal of Phenomenological Psychology, 40(1), 85–106.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • David Vogel
    • 1
    Email author
  • Christine M. Falter-Wagner
    • 2
    • 3
    • 4
  • Theresa Schoofs
    • 1
  • Katharina Krämer
    • 1
  • Christian Kupke
    • 5
  • Kai Vogeley
    • 1
    • 6
  1. 1.Department of PsychiatryUniversity Hospital CologneCologneGermany
  2. 2.Department of Psychiatry, Medical FacultyLMU MunichMunichGermany
  3. 3.Institute of Medical Psychology, Medical FacultyLMU MunichMunichGermany
  4. 4.Department of PsychologyUniversity of CologneCologneGermany
  5. 5.Department of Psychiatry, Society for Philosophy and Sciences of the Psyche, CharitéHumboldt-University BerlinBerlinGermany
  6. 6.Institute for Neuroscience and Medicine, Cognitive Neuroscience (INM-3)Research Centre JuelichJuelichGermany

Personalised recommendations