Advertisement

Journal of Autism and Developmental Disorders

, Volume 49, Issue 1, pp 173–184 | Cite as

Cord and Early Childhood Plasma Adiponectin Levels and Autism Risk: A Prospective Birth Cohort Study

  • Ramkripa Raghavan
  • M. Daniele Fallin
  • Xiumei Hong
  • Guoying Wang
  • Yuelong Ji
  • Elizabeth A. Stuart
  • David Paige
  • Xiaobin WangEmail author
Original Paper
  • 65 Downloads

Abstract

Emerging research suggests that adiponectin, a cytokine produced by adipose tissue, may be implicated in ASD. In this prospective birth cohort study (n = 847), we assessed the association between cord, early childhood plasma adiponectin and the risk of developing ASD. ASD was defined based on ICD codes of physician diagnosis. Cord adiponectin levels were inversely associated with ASD risk (aOR 0.50; 95% CI 0.33, 0.77), independent of preterm birth, early childhood adiponectin and other known ASD risk factors. Early childhood adiponectin, assessed prior to ASD diagnosis, was associated with lower risk of ASD, which attenuated after adjusting for cord adiponectin, indicating the relative importance of cord adiponectin in ASD risk. Further research is warranted to confirm our findings and elucidate biological mechanisms.

Keywords

Autism Adiponectin Preterm birth Cytokines 

Notes

Author Contributions

XW is the principal investigator of the Boston Birth Cohort, initiated the Boston Birth Cohort, oversaw subject recruitment, follow-up, and data collection, conceptualized the study and provided critical inputs on the study design, data analyses, interpretation of data, initial draft and revision of the manuscript. RR conceptualized and designed the study, assumed primary responsibility for data cleaning and statistical analyses, and drafted and revised this manuscript. MDR, YJ, EAS, and DP provided critical inputs on the study design, data analyses, interpretation of data and revision of the manuscript. XH and GW coordinated subject recruitment and follow-up, collected data, and critically reviewed the manuscript.

Funding

This study is supported in part by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number R40MC27443, Autism Field-initiated Innovative Research Studies Program; and grant number UJ2MC31074, Autism Single Investigator Innovation Program. This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the U.S. Government. The Boston Birth Cohort (the parent study) was supported in part by the March of Dimes PERI grants (20-FY02-56, #21-FY07-605); and the National Institutes of Health (NIH) grants (R21ES011666, R01HD041702, R21HD066471, U01AI090727, R21AI079872, and R01HD086013). Ramkripa Raghavan is supported by John and Alice Chenoweth-Pate Fellowship in her current training.

Compliance with Ethical Standards

Conflict of interest

None of the authors have a conflict of interest pertaining to this work.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2018_3688_MOESM1_ESM.docx (870 kb)
Supplementary material 1 (DOCX 869 KB)

References

  1. Akintunde, M. E., Rose, M., Krakowiak, P., Heuer, L., Ashwood, P., Hansen, R., et al. (2015). Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. Journal of Neuroimmunology, 286, 33–41.  https://doi.org/10.1016/j.jneuroim.2015.07.003.Google Scholar
  2. Al-Zaid, F. S., Alhader, A. A., & Al-Ayadhi, L. Y. (2014). Altered ghrelin levels in boys with autism: A novel finding associated with hormonal dysregulation. Scientific Reports, 4, 6478.  https://doi.org/10.1038/srep06478.Google Scholar
  3. Angelidou, A., Asadi, S., Alysandratos, K. D., Karagkouni, A., Kourembanas, S., & Theoharides, T. C. (2012). Perinatal stress, brain inflammation and risk of autism-review and proposal. BMC Pediatrics, 12, 89.  https://doi.org/10.1186/1471-2431-12-89.Google Scholar
  4. Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I., & Van de Water, J. (2011). Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, Behavior, and Immunity, 25(1), 40–45.  https://doi.org/10.1016/j.bbi.2010.08.003.Google Scholar
  5. Ashwood, P., Kwong, C., Hansen, R., Hertz-Picciotto, I., Croen, L., Krakowiak, P., et al. (2008). Brief report: Plasma leptin levels are elevated in autism: Association with early onset phenotype? Journal of Autism and Developmental Disorders, 38(1), 169–175.  https://doi.org/10.1007/s10803-006-0353-1.Google Scholar
  6. Ashwood, P., Wills, S., & Van de Water, J. (2006). The immune response in autism: A new frontier for autism research. Journal of Leukocyte Biology, 80(1), 1–15.  https://doi.org/10.1189/jlb.1205707.Google Scholar
  7. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, D.C.: American Psychiatric Association.Google Scholar
  8. Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., et al. (2018). Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1–23.  https://doi.org/10.15585/mmwr.ss6706a1.Google Scholar
  9. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.Google Scholar
  10. Blardi, P., de Lalla, A., Ceccatelli, L., Vanessa, G., Auteri, A., & Hayek, J. (2010). Variations of plasma leptin and adiponectin levels in autistic patients. Neuroscience Letters, 479(1), 54–57.  https://doi.org/10.1016/j.neulet.2010.05.027.Google Scholar
  11. Blardi, P., de Lalla, A., D’Ambrogio, T., Vonella, G., Ceccatelli, L., Auteri, A., et al. (2009). Long-term plasma levels of leptin and adiponectin in Rett syndrome. Clinical Endocrinology, 70(5), 706–709.  https://doi.org/10.1111/j.1365-2265.2008.03386.x.Google Scholar
  12. Brochu-Gaudreau, K., Rehfeldt, C., Blouin, R., Bordignon, V., Murphy, B. D., & Palin, M. F. (2010). Adiponectin action from head to toe. Endocrine, 37(1), 11–32.  https://doi.org/10.1007/s12020-009-9278-8.Google Scholar
  13. Brucato, M., Ladd-Acosta, C., Li, M., Caruso, D., Hong, X., Kaczaniuk, J., et al. (2017). Prenatal exposure to fever is associated with autism spectrum disorder in the boston birth cohort. Autism Research, 10(11), 1878–1890.  https://doi.org/10.1002/aur.1841.Google Scholar
  14. Burd, I., Balakrishnan, B., & Kannan, S. (2012). Models of fetal brain injury, intrauterine inflammation, and preterm birth. American Journal of Reproductive Immunology, 67(4), 287–294.  https://doi.org/10.1111/j.1600-0897.2012.01110.x.Google Scholar
  15. Chez, M. G., Dowling, T., Patel, P. B., Khanna, P., & Kominsky, M. (2007). Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatric Neurology, 36(6), 361–365.  https://doi.org/10.1016/j.pediatrneurol.2007.01.012.Google Scholar
  16. Darcy-Mahoney, A., Minter, B., Higgins, M., Guo, Y., Williams, B., Head Zauche, L. M., et al. (2016). Probability of an autism diagnosis by gestational age. Newborn and Infant Nursing Reviews, 16(4), 322–326.  https://doi.org/10.1053/j.nainr.2016.09.019.Google Scholar
  17. Dawczynski, K., de Vries, H., Beck, J. F., Schleussner, E., Wittig, S., & Proquitte, H. (2014). Adiponectin serum concentrations in newborn at delivery appear to be of fetal origin. Journal of Pediatric Endocrinology and Metabolism, 27(3–4), 273–278.  https://doi.org/10.1515/jpem-2013-0218.Google Scholar
  18. Erdei, C., & Dammann, O. (2014). The perfect storm: preterm birth, neurodevelopmental mechanisms, and autism causation. Perspectives in Biology and Medicine, 57(4), 470–481.  https://doi.org/10.1353/pbm.2014.0036.Google Scholar
  19. Essa, M. M., Braidy, N., Al-Sharbati, M. M., Al-Farsi, Y. M., Ali, A., Waly, M. I., et al. (2011). Elevated plasma leptin levels in autisic children of Sultanate of Oman. International Journal of Biological & Medical Research, 2(3), 803–805.Google Scholar
  20. Fezer, G. F., Matos, M. B., Nau, A. L., Zeigelboim, B. S., Marques, J. M., & Liberalesso, P. B. N. (2017). Perinatal features of children with autism spectrum disorder. Revista Paulista de Pediatria, 35(2), 130–135.  https://doi.org/10.1590/1984-0462/;2017;35;2;00003.Google Scholar
  21. Fiorentino, M., Sapone, A., Senger, S., Camhi, S. S., Kadzielski, S. M., Buie, T. M., et al. (2016). Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Molecular Autism, 7, 49.  https://doi.org/10.1186/s13229-016-0110-z.Google Scholar
  22. Fujita-Shimizu, A., Suzuki, K., Nakamura, K., Miyachi, T., Matsuzaki, H., Kajizuka, M., et al. (2010). Decreased serum levels of adiponectin in subjects with autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(3), 455–458.  https://doi.org/10.1016/j.pnpbp.2009.12.020.Google Scholar
  23. Ghaffari, M. A., Mousavinejad, E., Riahi, F., Mousavinejad, M., & Afsharmanesh, M. R. (2016). Increased serum levels of tumor necrosis factor-alpha, resistin, and visfatin in the children with autism spectrum disorders: A case-control study. Neurology Research International.  https://doi.org/10.1155/2016/9060751.Google Scholar
  24. Hansen-Pupp, I., Hellgren, G., Hard, A. L., Smith, L., Hellstrom, A., & Lofqvist, C. (2015). Early surge in circulatory adiponectin is associated with improved growth at near term in very preterm infants. The Journal of Clinical Endocrinology and Metabolism, 100(6), 2380–2387.  https://doi.org/10.1210/jc.2015-1081.Google Scholar
  25. Hellgren, G., Engstrom, E., Smith, L. E., Lofqvist, C., & Hellstrom, A. (2015). Effect of preterm birth on postnatal apolipoprotein and adipocytokine profiles. Neonatology, 108(1), 16–22.  https://doi.org/10.1159/000381278.Google Scholar
  26. Hu, Y., Dong, X., & Chen, J. (2015). Adiponectin and depression: A meta-analysis. Biomedical Reports, 3(1), 38–42.  https://doi.org/10.3892/br.2014.372.Google Scholar
  27. Inami, I., Okada, T., Fujita, H., Makimoto, M., Hosono, S., Minato, M., et al. (2007). Impact of serum adiponectin concentration on birth size and early postnatal growth. Pediatric Research, 61(5 Pt 1), 604–606.  https://doi.org/10.1203/pdr.0b013e3180459f8a.Google Scholar
  28. Inoue, M., Maehata, E., Yano, M., Taniyama, M., & Suzuki, S. (2005). Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metabolism, 54(3), 281–286.  https://doi.org/10.1016/j.metabol.2004.09.006.Google Scholar
  29. Ito, H., Morishita, R., & Nagata, K. I. (2017). Autism spectrum disorder-associated genes and the development of dentate granule cells. Medical Molecular Morphology, 50(3), 123–129.  https://doi.org/10.1007/s00795-017-0161-z.Google Scholar
  30. Kajantie, E., Hytinantti, T., Hovi, P., & Andersson, S. (2004). Cord plasma adiponectin: A 20-fold rise between 24 weeks gestation and term. The Journal of Clinical Endocrinology and Metabolism, 89(8), 4031–4036.  https://doi.org/10.1210/jc.2004-0018.Google Scholar
  31. Kotani, Y., Yokota, I., Kitamura, S., Matsuda, J., Naito, E., & Kuroda, Y. (2004). Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight. Clinical Endocrinology, 61(4), 418–423.  https://doi.org/10.1111/j.1365-2265.2004.02041.x.Google Scholar
  32. Kuzniewicz, M. W., Wi, S., Qian, Y., Walsh, E. M., Armstrong, M. A., & Croen, L. A. (2014). Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. The Journal of Pediatrics, 164(1), 20–25.  https://doi.org/10.1016/j.jpeds.2013.09.021.Google Scholar
  33. Lehto, S. M., Huotari, A., Niskanen, L., Tolmunen, T., Koivumaa-Honkanen, H., Honkalampi, K., et al. (2010). Serum adiponectin and resistin levels in major depressive disorder. Acta Psychiatrica Scandinavica, 121(3), 209–215.  https://doi.org/10.1111/j.1600-0447.2009.01463.x.Google Scholar
  34. Lenz, A. M., & Diamond, F. (2012). The importance of the adiponectin and leptin relationship in in utero and infant growth. New York: Springer.Google Scholar
  35. Li, M., Fallin, M. D., Riley, A., Landa, R., Walker, S. O., Silverstein, M., et al. (2016). The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics, 137(2), e20152206.  https://doi.org/10.1542/peds.2015-2206.Google Scholar
  36. Lindsay, R. S., Walker, J. D., Havel, P. J., Hamilton, B. A., Calder, A. A., Johnstone, F. D., et al. (2003). Adiponectin is present in cord blood but is unrelated to birth weight. Diabetes Care, 26(8), 2244–2249.Google Scholar
  37. Lisik, M. Z., Gutmajster, E., & Sieron, A. L. (2016). Plasma levels of leptin and adiponectin in fragile X syndrome. Neuroimmunomodulation, 23(4), 239–243.  https://doi.org/10.1159/000452336.Google Scholar
  38. Lyall, K., Croen, L., Daniels, J., Fallin, M. D., Ladd-Acosta, C., Lee, B. K., et al. (2017). The changing epidemiology of autism spectrum disorders. Annual Review of Public Health, 38, 81–102.  https://doi.org/10.1146/annurev-publhealth-031816-044318.Google Scholar
  39. Machado-Vieira, R., Gold, P. W., Luckenbaugh, D. A., Ballard, E. D., Richards, E. M., Henter, I. D., et al. (2017). The role of adipokines in the rapid antidepressant effects of ketamine. Molecular Psychiatry, 22(1), 127–133.  https://doi.org/10.1038/mp.2016.36.Google Scholar
  40. Mansur, R. B., Rizzo, L. B., Santos, C. M., Asevedo, E., Cunha, G. R., Noto, M. N., et al. (2016). Adipokines, metabolic dysfunction and illness course in bipolar disorder. Journal of Psychiatric Research, 74, 63–69.  https://doi.org/10.1016/j.jpsychires.2015.12.003.Google Scholar
  41. Mantzoros, C. S., Rifas-Shiman, S. L., Williams, C. J., Fargnoli, J. L., Kelesidis, T., & Gillman, M. W. (2009). Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: A prospective cohort study. Pediatrics, 123(2), 682–689.  https://doi.org/10.1542/peds.2008-0343.Google Scholar
  42. Martos-Moreno, G. A., Barrios, V., Saenz de Pipaon, M., Pozo, J., Dorronsoro, I., Martinez-Biarge, M., et al. (2009). Influence of prematurity and growth restriction on the adipokine profile, IGF1, and ghrelin levels in cord blood: Relationship with glucose metabolism. European Journal of Endocrinology, 161(3), 381–389.  https://doi.org/10.1530/EJE-09-0193.Google Scholar
  43. Mazaki-Tovi, S., Kanety, H., Pariente, C., Hemi, R., Efraty, Y., Schiff, E., et al. (2007). Determining the source of fetal adiponectin. The Journal of Reproductive Medicine, 52(9), 774–778.Google Scholar
  44. Mazaki-Tovi, S., Romero, R., Vaisbuch, E., Erez, O., Mittal, P., Chaiworapongsa, T., et al. (2009). Dysregulation of maternal serum adiponectin in preterm labor. Journal of Maternal-Fetal and Neonatal Medicine, 22(10), 887–904.  https://doi.org/10.1080/14767050902994655.Google Scholar
  45. Meyer, D. M., Brei, C., Stecher, L., Much, D., Brunner, S., & Hauner, H. (2017). Cord blood and child plasma adiponectin levels in relation to childhood obesity risk and fat distribution up to 5 y. Pediatric Research, 81(5), 745–751.  https://doi.org/10.1038/pr.2016.275.Google Scholar
  46. Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Schleifer, K., Dienger, K., Manning-Courtney, P., et al. (2006). Elevated cytokine levels in children with autism spectrum disorder. Journal of Neuroimmunology, 172(1–2), 198–205.  https://doi.org/10.1016/j.jneuroim.2005.11.007.Google Scholar
  47. Movsas, T. Z., & Paneth, N. (2012). The effect of gestational age on symptom severity in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 42(11), 2431–2439.  https://doi.org/10.1007/s10803-012-1501-4.Google Scholar
  48. Nakano, Y., Itabashi, K., Sakurai, M., Aizawa, M., Dobashi, K., & Mizuno, K. (2013). Preterm infants have altered adiponectin levels at term-equivalent age even if they do not present with extrauterine growth restriction. Hormone Research in Paediatrics, 80(3), 147–153.  https://doi.org/10.1159/000354037.Google Scholar
  49. Ng, R. C., & Chan, K. H. (2017). Potential neuroprotective effects of adiponectin in Alzheimer’s disease. International Journal of Molecular Sciences.  https://doi.org/10.3390/ijms18030592.Google Scholar
  50. Oberthuer, A., Donmez, F., Oberhauser, F., Hahn, M., Hoppenz, M., Hoehn, T., et al. (2012). Hypoadiponectinemia in extremely low gestational age newborns with severe hyperglycemia—A matched-paired analysis. PLoS ONE, 7(6), e38481.  https://doi.org/10.1371/journal.pone.0038481.Google Scholar
  51. Pardo, I. M., Geloneze, B., Tambascia, M. A., & Barros-Filho, A. A. (2004). Hyperadiponectinemia in newborns: Relationship with leptin levels and birth weight. Obesity Research, 12(3), 521–524.  https://doi.org/10.1038/oby.2004.59.Google Scholar
  52. Raghavan, R., Riley, A. W., Volk, H., Caruso, D., Hironaka, L., Sices, L., et al. (2018). Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatric and Perinatal Epidemiology.  https://doi.org/10.1111/ppe.12414.Google Scholar
  53. Rodrigues, D. H., Rocha, N. P., Sousa, L. F., Barbosa, I. G., Kummer, A., & Teixeira, A. L. (2014). Changes in adipokine levels in autism spectrum disorders. Neuropsychobiology, 69(1), 6–10.  https://doi.org/10.1159/000356234.Google Scholar
  54. Saito, M., Nishimura, K., Nozue, H., Miyazono, Y., & Kamoda, T. (2011). Changes in serum adiponectin levels from birth to term-equivalent age are associated with postnatal weight gain in preterm infants. Neonatology, 100(1), 93–98.  https://doi.org/10.1159/000322654.Google Scholar
  55. Schendel, D., & Bhasin, T. K. (2008). Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics, 121(6), 1155–1164.  https://doi.org/10.1542/peds.2007-1049.Google Scholar
  56. Siahanidou, T., Mandyla, H., Papassotiriou, G. P., Papassotiriou, I., & Chrousos, G. (2007). Circulating levels of adiponectin in preterm infants. Archives of Disease in Childhood-Fetal and Neonatal Edition, 92(4), F286–F290.  https://doi.org/10.1136/adc.2006.106112.Google Scholar
  57. Song, J., Kang, S. M., Kim, E., Kim, C. H., Song, H. T., & Lee, J. E. (2015). Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: An in vivo and in vitro study. Cell Death & Differentiation, 6, e1844.  https://doi.org/10.1038/cddis.2015.220.Google Scholar
  58. Stefan, N., Bunt, J. C., Salbe, A. D., Funahashi, T., Matsuzawa, Y., & Tataranni, P. A. (2002). Plasma adiponectin concentrations in children: Relationships with obesity and insulinemia. The Journal of Clinical Endocrinology and Metabolism, 87(10), 4652–4656.  https://doi.org/10.1210/jc.2002-020694.Google Scholar
  59. Terrazzan, A. C., Procianoy, R. S., & Silveira, R. C. (2014). Neonatal cord blood adiponectin and insulin levels in very low birth weight preterm and healthy full-term infants. Journal of Maternal-Fetal and Neonatal Medicine, 27(6), 616–620.  https://doi.org/10.3109/14767058.2013.823939.Google Scholar
  60. Thundyil, J., Pavlovski, D., Sobey, C. G., & Arumugam, T. V. (2012). Adiponectin receptor signalling in the brain. British Journal of Pharmacology, 165(2), 313–327.  https://doi.org/10.1111/j.1476-5381.2011.01560.x.Google Scholar
  61. Tsai, P. J., Yu, C. H., Hsu, S. P., Lee, Y. H., Chiou, C. H., Hsu, Y. W., et al. (2004). Cord plasma concentrations of adiponectin and leptin in healthy term neonates: Positive correlation with birthweight and neonatal adiposity. Clinical Endocrinology, 61(1), 88–93.  https://doi.org/10.1111/j.1365-2265.2004.02057.x.Google Scholar
  62. Villarreal-Molina, M. T., & Antuna-Puente, B. (2012). Adiponectin: Anti-inflammatory and cardioprotective effects. Biochimie, 94(10), 2143–2149.  https://doi.org/10.1016/j.biochi.2012.06.030.Google Scholar
  63. Wang, G., Divall, S., Radovick, S., Paige, D., Ning, Y., Chen, Z., et al. (2014). Preterm birth and random plasma insulin levels at birth and in early childhood. JAMA, 311(6), 587–596.  https://doi.org/10.1001/jama.2014.1.Google Scholar
  64. Wang, G., Hu, F. B., Mistry, K. B., Zhang, C., Ren, F., Huo, Y., et al. (2016a). Association between maternal prepregnancy body mass index and plasma folate concentrations with child metabolic health. JAMA Pediatrics, 170(8), e160845.  https://doi.org/10.1001/jamapediatrics.2016.0845.Google Scholar
  65. Wang, G., Johnson, S., Gong, Y., Polk, S., Divall, S., Radovick, S., et al. (2016b). Weight gain in infancy and overweight or obesity in childhood across the gestational spectrum: A prospective birth cohort study. Scientific Reports, 6, 29867.  https://doi.org/10.1038/srep29867.Google Scholar
  66. Wang, X., Zuckerman, B., Pearson, C., Kaufman, G., Chen, C., Wang, G., et al. (2002). Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA, 287(2), 195–202.Google Scholar
  67. Wei, H., Alberts, I., & Li, X. (2013). Brain IL-6 and autism. Neuroscience, 252, 320–325.  https://doi.org/10.1016/j.neuroscience.2013.08.025.Google Scholar
  68. Weyermann, M., Beermann, C., Brenner, H., & Rothenbacher, D. (2006). Adiponectin and leptin in maternal serum, cord blood, and breast milk. Clinical Chemistry, 52(11), 2095–2102.  https://doi.org/10.1373/clinchem.2006.071019.Google Scholar
  69. Wozniak, R. H., Leezenbaum, N. B., Northrup, J. B., West, K. L., & Iverson, J. M. (2017). The development of autism spectrum disorders: Variability and causal complexity. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), e1426.  https://doi.org/10.1002/wcs.1426.Google Scholar
  70. Yeung, E. H., McLain, A. C., Anderson, N., Lawrence, D., Boghossian, N. S., Druschel, C., et al. (2015). Newborn adipokines and birth outcomes. Paediatric and Perinatal Epidemiology, 29(4), 317–325.  https://doi.org/10.1111/ppe.12203.Google Scholar
  71. Yoshida, T., Nagasaki, H., Asato, Y., & Ohta, T. (2009). The ratio of high-molecular weight adiponectin and total adiponectin differs in preterm and term infants. Pediatric Research, 65(5), 580–583.  https://doi.org/10.1203/PDR.0b013e3181995103.Google Scholar
  72. Young, A. M., Campbell, E., Lynch, S., Suckling, J., & Powis, S. J. (2011). Aberrant NF-kappaB expression in autism spectrum condition: A mechanism for neuroinflammation. Frontiers in Psychiatry, 2, 27.  https://doi.org/10.3389/fpsyt.2011.00027.Google Scholar
  73. Zerbo, O., Yoshida, C., Grether, J. K., Van de Water, J., Ashwood, P., Delorenze, G. N., et al. (2014). Neonatal cytokines and chemokines and risk of Autism Spectrum Disorder: The Early Markers for Autism (EMA) study: A case-control study. Journal of Neuroinflammation, 11, 113.  https://doi.org/10.1186/1742-2094-11-113.Google Scholar
  74. Zhang, D., Wang, X., Wang, B., Garza, J. C., Fang, X., Wang, J., et al. (2017). Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Molecular Psychiatry, 22(7), 1044–1055.  https://doi.org/10.1038/mp.2016.58.Google Scholar
  75. Zhang, D., Wang, X., & Lu, X. Y. (2016a). Adiponectin exerts neurotrophic effects on dendritic arborization, spinogenesis, and neurogenesis of the dentate gyrus of male mice. Endocrinology, 157(7), 2853–2869.  https://doi.org/10.1210/en.2015-2078.Google Scholar
  76. Zhang, Z. Q., Lu, Q. G., Huang, J., Jiao, C. Y., Huang, S. M., & Mao, L. M. (2016b). Maternal and cord blood adiponectin levels in relation to post-natal body size in infants in the first year of life: A prospective study. BMC Pregnancy and Childbirth, 16(1), 189.  https://doi.org/10.1186/s12884-016-0978-9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive HealthJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Wendy Klag Center for Autism and Developmental Disabilities & Department of Mental HealthJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  3. 3.Department of BiostatisticsJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  4. 4.Department of Population, Family and Reproductive HealthJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  5. 5.Department of PediatricsJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations