Advertisement

Journal of Autism and Developmental Disorders

, Volume 48, Issue 10, pp 3551–3561 | Cite as

Statistical Learning is Associated with Autism Symptoms and Verbal Abilities in Young Children with Autism

  • Rebecca M. Jones
  • Thaddeus Tarpey
  • Amarelle Hamo
  • Caroline Carberry
  • Gijs Brouwer
  • Catherine Lord
Original Paper

Abstract

Statistical learning-extracting regularities in the environment-may underlie complex social behavior. 124 children, 56 with autism and 68 typically developing, ages 2–8 years, completed a novel visual statistical learning task on an iPad. Averaged together, children with autism demonstrated less learning on the task compared to typically developing children. However, multivariate classification analyses characterized individual behavior patterns, and demonstrated a subset of children with autism had similar learning patterns to typically developing children and that subset of children had less severe autism symptoms. Therefore, statistically averaging data resulted in missing critical heterogeneity. Variability in statistical learning may help to understand differences in autism symptoms across individuals and could be used to tailor and inform treatment decisions.

Keywords

Statistical learning Autism Social communication Cognitive abilities Bayes classification 

Notes

Acknowledgments

We thank Sara Levitt Palencia for her helpful input and feedback and thank Jennifer B. Schwartz for designing the illustrations in Fig. 1 (http://www.Jenniferbschwartz.com).

Author Contributions

RMJ and CL developed the study. RMJ, GJB and CL contributed to the study design. Testing and data collection was performed by RMJ, AH and CC, TT performed the data analysis with the supervision of RMJ and CL, RMJ drafted the manuscript and CL and TT provided critical revisions. All authors approved the final version of the manuscript for submission.

Funding

This study was funded in part by an Autism Speaks Meixner Fellowship (7608), the Department of Defense (AR130106), a generous gift from the Mortimer D. Sackler family and the Leon Levy Foundation.

Compliance with Ethical Standards

Conflict of interest

Catherine Lord receives royalties from the ADOS and all proceeds related to this project were donated to charity.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2018_3625_MOESM1_ESM.pdf (83 kb)
Supplementary material 1 (PDF 83 KB)

References

  1. Achenbach, T. M., & Rescorla, L. (2001). Manual for the ASEBA school-age forms & profiles. Burlington, VT: ASEBA.Google Scholar
  2. Amso, D., & Davidow, J. (2012). The development of implicit learning from infancy to adulthood: Item frequencies, relations, and cognitive flexibility. Developmental Psychobiology, 54(6), 664–673.  https://doi.org/10.1002/dev.20587.CrossRefPubMedGoogle Scholar
  3. Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36(2), 286–304.  https://doi.org/10.1111/j.1551-6709.2011.01200.x.CrossRefPubMedGoogle Scholar
  4. Barnes, K. A., Howard, J. H. Jr., Howard, D. V., Gilotty, L., Kenworthy, L., Gaillard, W. D., & Vaidya, C. J. (2008). Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. Neuropsychology, 22(5), 563–570.  https://doi.org/10.1037/0894-4105.22.5.563.CrossRefPubMedGoogle Scholar
  5. Brown, J., Aczel, B., Jimenez, L., Kaufman, S. B., & Grant, K. P. (2010). Intact implicit learning in autism spectrum conditions. Quarterly Journal of Experimental Psychology (Hove), 63(9), 1789–1812.  https://doi.org/10.1080/17470210903536910.CrossRefGoogle Scholar
  6. Constantino, J. N. (2012). Social responsiveness scale second edition (SRS-2). Los Angeles: Western Psychological Services.Google Scholar
  7. Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J., … Varley, J. (2010). Randomized, controlled trial of an intervention for toddlers with autism: The early start denver model. Pediatrics, 125(1), e17–e23.  https://doi.org/10.1542/peds.2009-0958.CrossRefGoogle Scholar
  8. Elliott, C. D. (2007). Differential Ability Scales Second Edition. San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
  9. Estes, A., Munson, J., Rogers, S. J., Greenson, J., Winter, J., & Dawson, G. (2015). Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 54(7), 580–587.  https://doi.org/10.1016/j.jaac.2015.04.005.CrossRefGoogle Scholar
  10. Foti, F., De Crescenzo, F., Vivanti, G., Menghini, D., & Vicari, S. (2015). Implicit learning in individuals with autism spectrum disorders: A meta-analysis. Psychology Medicine, 45(5), 897–910.  https://doi.org/10.1017/S0033291714001950.CrossRefGoogle Scholar
  11. Fountain, C., Winter, A. S., & Bearman, P. S. (2012). Six developmental trajectories characterize children with autism. Pediatrics, 129(5), e1112-1120.  https://doi.org/10.1542/peds.2011-1601.CrossRefGoogle Scholar
  12. Gidley Larson, J. C., & Mostofsky, S. H. (2008). Evidence that the pattern of visuomotor sequence learning is altered in children with autism. Autism Research, 1(6), 341–353.  https://doi.org/10.1002/aur.54.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gordon, B., & Stark, S. (2007). Procedural learning of a visual sequence in individuals with autism. Focus on Autism and Other Developmental Disabilities, 22(1), 14–22.CrossRefGoogle Scholar
  14. Hastie, T. J., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.CrossRefGoogle Scholar
  15. Hus, V., Bishop, S., Gotham, K., Huerta, M., & Lord, C. (2013). Factors influencing scores on the social responsiveness scale. Journal of the Child Psychology Psychiatry, 54(2), 216–224.  https://doi.org/10.1111/j.1469-7610.2012.02589.x.CrossRefGoogle Scholar
  16. Hus, V., Gotham, K., & Lord, C. (2014). Standardizing ADOS domain scores: Separating severity of social affect and restricted and repetitive behaviors. Journal of Autism and Developmental Disorders, 44(10), 2400–2412.  https://doi.org/10.1007/s10803-012-1719-1.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jeste, S. S., Kirkham, N., Senturk, D., Hasenstab, K., Sugar, C., Kupelian, C., … Johnson, S. P. (2015). Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD. Developmental Science, 18(1), 90–105.  https://doi.org/10.1111/desc.12188.CrossRefPubMedGoogle Scholar
  18. Kavale, K. A., & Forness, S. R. (1996). Social skill deficits and learning disabilities: A meta-analysis. Journal of Learning Disabilities, 29(3), 226–237.  https://doi.org/10.1177/002221949602900301.CrossRefPubMedGoogle Scholar
  19. Kim, S. H., Macari, S., Koller, J., & Chawarska, K. (2015). Examining the phenotypic heterogeneity of early Autism Spectrum Disorder: Subtypes and short-term outcomes. Journal of Child Psychology and Psychiatry.  https://doi.org/10.1111/jcpp.12448.CrossRefPubMedGoogle Scholar
  20. Klinger, L. G., Klinger, M. R., & Pohlig, R. L. (2007). Implicit learning impairments in autism spectrum disorders. In J. M. Perez, P. M. Gonzalez, M. L. Comi, & C. Nieto (Eds.), New developments in autism: The future is today (pp. 76–103), Philadelphia: Jessica Kingsley.Google Scholar
  21. Kuhl, P. K., Coffey-Corina, S., Padden, D., & Dawson, G. (2005). Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological measures. Developmental Science, 8(1), F1–F12.  https://doi.org/10.1111/j.1467-7687.2004.00384.x.CrossRefGoogle Scholar
  22. Lord, C., & Jones, R. M. (2012). Annual research review: Re-thinking the classification of autism spectrum disorders. Journal of Child Psychology and Psychiatry, 53(5), 490–509.  https://doi.org/10.1111/j.1469-7610.2012.02547.x.CrossRefPubMedGoogle Scholar
  23. Lord, C., Luyster, R. J., Gotham, K., & Guthrie, W. (2012a). Autism diagnostic observation schedule, second edition (ADOS-2) manual (Part II): Toddler module. Torrence, CA: Western Psychological Services.Google Scholar
  24. Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. L. (2012b). Autism diagnostic observation schedule, second edition (ADOS-2) manual (Part 1): modules 1–4. Torrence, CA: Western Psychological Services.Google Scholar
  25. MacDonald, R., Parry-Cruwys, D., Dupere, S., & Ahearn, W. (2014). Assessing progress and outcome of early intensive behavioral intervention for toddlers with autism. Research in Developmental Disabilities, 35(12), 3632–3644.  https://doi.org/10.1016/j.ridd.2014.08.036.CrossRefPubMedGoogle Scholar
  26. Mayo, J., & Eigsti, I. M. (2012). Brief report: A comparison of statistical learning in school-aged children with high functioning autism and typically developing peers. Journal of autism and developmental disorders, 42(11), 2476–2485.  https://doi.org/10.1007/s10803-012-1493-0.CrossRefPubMedGoogle Scholar
  27. McGonigle-Chalmers, M., & McCrohan, F. (2017). Using inclusive sampling to highlight specific executive functioning impairments in autism spectrum disorder. International Journal of Developmental Disabilities.  https://doi.org/10.1080/20473869.2017.1288887.CrossRefGoogle Scholar
  28. Meltzoff, A. N., Kuhl, P. K., Movellan, J., & Sejnowski, T. J. (2009). Foundations for a new science of learning. Science, 325(5938), 284–288.  https://doi.org/10.1126/science.1175626.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mullen, E. M. (1995). Mullen scales of early learning. Circle Pines, MN: American Guidance Services, Inc.Google Scholar
  30. Nemeth, D., Janacsek, K., Balogh, V., Londe, Z., Mingesz, R., Fazekas, M., … Vetro, A. (2010). Learning in autism: Implicitly superb. PLoS ONE, 5(7), e11731.  https://doi.org/10.1371/journal.pone.0011731.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Obeid, R., Brooks, P. J., Powers, K. L., Gillespie-Lynch, K., & Lum, J. A. (2016). Statistical learning in specific language impairment and autism spectrum disorder: A meta-analysis. Frontiers in Psychology, 7, 1245.  https://doi.org/10.3389/fpsyg.2016.01245.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends Cognitive Science, 10(5), 233–238.  https://doi.org/10.1016/j.tics.2006.03.006.CrossRefGoogle Scholar
  33. Pickles, A., Anderson, D. K., & Lord, C. (2014). Heterogeneity and plasticity in the development of language: A 17-year follow-up of children referred early for possible autism. Journal of Child Psychology and Psychiatry, 55(12), 1354–1362.  https://doi.org/10.1111/jcpp.12269.CrossRefPubMedGoogle Scholar
  34. Raven, J., Raven, J. C., & Court, J. H. (2003). Manual for Raven’s progressive matrices and vocabulary scales. San Antonio, TX: Harcourt Assessment.Google Scholar
  35. Reeb-Sutherland, B. C., Levitt, P., & Fox, N. A. (2012). The predictive nature of individual differences in early associative learning and emerging social behavior. PLoS ONE, 7(1), e30511.  https://doi.org/10.1371/journal.pone.0030511.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rogers, S. J., Estes, A., Lord, C., Vismara, L., Winter, J., Fitzpatrick, A., … Dawson, G. (2012). Effects of a brief Early Start Denver model (ESDM)-based parent intervention on toddlers at risk for autism spectrum disorders: A randomized controlled trial. Journal of American Academy of Child and Adolescent Psychiatry, 51(10), 1052–1065.  https://doi.org/10.1016/j.jaac.2012.08.003.CrossRefGoogle Scholar
  37. Roid, G. H. (2003). Stanford-Binet intelligence scales, 5th edition. Austin, TX: Riverside.Google Scholar
  38. Roser, M. E., Aslin, R. N., McKenzie, R., Zahra, D., & Fiser, J. (2015). Enhanced visual statistical learning in adults with autism. Neuropsychology, 29(2), 163–172.  https://doi.org/10.1037/neu0000137.CrossRefPubMedGoogle Scholar
  39. Rutter, M., Bailey, A., & Lord, C. (2003). Social communication questionnaire. Los Angeles, CA: Western Psychological Services.Google Scholar
  40. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.CrossRefGoogle Scholar
  41. Schapiro, A., & Turk-Browne, N. (2015). Statistical learning. In A. W. Toga (Ed.), Brain mapping: An encyclopedic reference. San Diego, CA: Academic Press.Google Scholar
  42. Scott-Van Zeeland, A. A., McNealy, K., Wang, A. T., Sigman, M., Bookheimer, S. Y., & Dapretto, M. (2010). No neural evidence of statistical learning during exposure to artificial languages in children with autism spectrum disorders. Biological Psychiatry, 68(4), 345–351.  https://doi.org/10.1016/j.biopsych.2010.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shafto, C. L., Conway, C. M., Field, S. L., & Houston, D. M. (2012). Visual sequence learning in infancy: Domain-general and domain-specific associations with language. Infancy, 17(3), 247–271.  https://doi.org/10.1111/j.1532-7078.2011.00085.x.CrossRefGoogle Scholar
  44. Tarpey, T., Petkova, E., & Zhu, L. Y. (2016). Stratified psychiatry via convexity-based clustering with applications towards moderator analysis. Statistics and Its Interface, 9(3), 255–266.CrossRefGoogle Scholar
  45. Wechsler, D. (2012). Wechsler preschool and primary scale of intelligence-fourth edition technical and interpretive manual. San Antonio, TX: Pearson.Google Scholar
  46. Wu, R., Gopnik, A., Richardson, D. C., & Kirkham, N. Z. (2011). Infants learn about objects from statistics and people. Developmental Psychobiology, 47(5), 1220–1229.  https://doi.org/10.1037/a0024023.CrossRefGoogle Scholar
  47. R: A language and environment for statistical computing. (2017). Vienna: R Foundation for Statistical Computing.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Weill Cornell MedicineThe Center for Autism and the Developing BrainWhite PlainsUSA
  2. 2.Department of Mathematics & StatisticsWright State UniversityDaytonUSA
  3. 3.Center for Neural ScienceNew York UniversityNew YorkUSA

Personalised recommendations