Journal of Autism and Developmental Disorders

, Volume 48, Issue 6, pp 2187–2202 | Cite as

Evaluating Sensory Processing in Fragile X Syndrome: Psychometric Analysis of the Brain Body Center Sensory Scales (BBCSS)

  • Jacek KolaczEmail author
  • Melissa Raspa
  • Keri J. Heilman
  • Stephen W. Porges
Original Paper


Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test–retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.


Fragile X Autism spectrum disorders Polyvagal theory Autonomic nervous system Psychometrics Sensory processing 



We wish to thank all families who dedicated their time to make this study possible.

Author Contributions

JK, MR, KJH, and SWP contributed to the conception and design of the study; JK conducted analyses and wrote the first draft of the manuscript; JK, MR, KJH, and SWP contributed to manuscript revision and approved the submitted version.


This study was funded by the North Carolina Translational & Clinical Sciences Institute Grant # 550KR111516.

Compliance with Ethical Standards

Conflict of interest

Jacek Kolacz declares that he has no conflict of interest. Melissa Raspa declares that she has no conflict of interest. Keri J. Heilman declares that she has no conflict of interest. Stephen W. Porges declares that he has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2018_3491_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 KB)


  1. Ayres, A. J. (1964). Tactile functions: Their relation to hyperactive and perceptual-motor behavior. American Journal of Occupational Therapy, 18, 6–11.PubMedGoogle Scholar
  2. Ayres, A. J. (1965). Patterns of perceptual-motor dysfunction in children: A factor analytic study. Perceptual and Motor Skills, 20, 335–368.CrossRefPubMedGoogle Scholar
  3. Ayres, A. J. (1972). Sensory integration and the child. Los Angeles, CA: Westem Psychological Services.Google Scholar
  4. Bailey, D. B., Hatton, D. D., Skinner, M., & Mesibov, G. (2001). Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. Journal of Autism and Developmental Disorders, 31(2), 165–174.CrossRefPubMedGoogle Scholar
  5. Bailey, D. B., Mesibov, G. B., Hatton, D. D., Clark, R. D., Roberts, J. E., & Mayhew, L. (1998). Autistic behavior in young boys with fragile X syndrome. Journal of Autism and Developmental Disorders, 28(6), 499–508.CrossRefPubMedGoogle Scholar
  6. Bailey, D. B., Raspa, M., Olmsted, M., & Holiday, D. B. (2008). Co-occurring conditions associated with FMR1 gene variations: Findings from a national parent survey. American Journal of Medical Genetics Part A, 146(16), 2060–2069.CrossRefGoogle Scholar
  7. Baranek, G. T. (1999). Sensory Experiences Questionnaire Version 2.1.Google Scholar
  8. Baranek, G. T., David, F. J., Poe, M. D., Stone, W. L., & Watson, L. R. (2006). Sensory experiences questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. Journal of Child Psychology and Psychiatry, 47(6), 591–601.CrossRefPubMedGoogle Scholar
  9. Baranek, G. T., Reinhartsen, D., & Wannamaker, S. (2001). Play: Engaging children with autism. In R. Heubner (Ed.), Autism: A sensorimotor approach to management (pp. 311–351). Philadelphia: F. A. Davis.Google Scholar
  10. Baranek, G. T., Roberts, J. E., David, F. J., Sideris, J., Mirrett, P. L., Hatton, D. D., & Bailey, D. B. (2008). Developmental trajectories and correlates of sensory processing in young boys with fragile X syndrome. Physical and Occupational Therapy in Pediatrics, 28(1), 79–98.CrossRefPubMedGoogle Scholar
  11. Barendse, M. T., Oort, F. J., & Timmerman, M. E. (2015). Using exploratory factor analysis to determine the dimensionality of discrete responses. Structural Equation Modeling, 22(1), 87–101.CrossRefGoogle Scholar
  12. Belmonte, M. K., & Bourgeron, T. (2006). Fragile X syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9(10), 1221–1225.CrossRefPubMedGoogle Scholar
  13. Belser, R. C., & Sudhalter, V. (1995). Arousal difficulties in males with fragile X syndrome: A preliminary report. Developmental Brain Dysfunction, 8(4–6), 270–279.Google Scholar
  14. Ben-Sasson, A., Cermak, S. A., Orsmond, G. I., & Tager-Flusberg, H. (2007). Extreme sensory modulation behaviors in toddlers with autism spectrum disorders. The American Journal of Occupational Therapy, 61(5), 584.CrossRefPubMedGoogle Scholar
  15. Bentler, P. M. (1972). A lower-bound method for the dimension-free measurement of internal consistency. Social Science Research, 1, 343–357.CrossRefGoogle Scholar
  16. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238.CrossRefPubMedGoogle Scholar
  17. Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74, 137–143.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brown, C., & Dunn, W. (2002). Adolescent-adult sensory profile: user’s manual. San Antonio: Therapy Skill Builders.Google Scholar
  19. Brown, C., Tollefson, N., Dunn, W., Cromwell, R., & Filion, D. (2001). The adult sensory profile: Measuring patterns of sensory processing. American Journal of Occupational Therapy, 55(1), 75–82.CrossRefPubMedGoogle Scholar
  20. Case-Smith, J., Weaver, L. L., & Fristad, M. A. (2015). A systematic review of sensory processing interventions for children with autism spectrum disorders. Autism, 19(2), 133–148.CrossRefPubMedGoogle Scholar
  21. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.CrossRefPubMedGoogle Scholar
  22. Chan, J. C. (1991). Response-order effects in Likert-type scales. Educational and Psychological Measurement, 51(3), 531–540.CrossRefGoogle Scholar
  23. Christian, L. M., Dillman, D. A., & Smyth, J. D. (2008). The effects of mode and format on answers to scalar questions in telephone and web surveys. Advances in Telephone Survey Methodology, 12, 250–275.Google Scholar
  24. Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6(4), 284.CrossRefGoogle Scholar
  25. Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114(3), 494.CrossRefGoogle Scholar
  26. Cohen, I. L. (1995). A theoretical analysis of the role of hyperarousal in the learning and behavior of fragile X males. Developmental Disabilities Research Reviews, 1(4), 286–291.CrossRefGoogle Scholar
  27. Cohen, I. L., Fisch, G. S., Sudhalter, V., Wolf-Schein, E. G., Hanson, D., Hagerman, R., … Brown, W. T. (1988). Social gaze, social avoidance, and repetitive behavior in fragile X males: A controlled study. American Journal of Mental Retardation, 92(5), 436–446.PubMedGoogle Scholar
  28. Cohen, I. L., Vietze, P. M., Sudhalter, V., Jenkins, E. C., & Brown, W. T. (1989). Parent-child dyadic gaze patterns in fragile X males and in non-fragile X males with autistic disorder. Journal of Child Psychology and Psychiatry, 30(6), 845–856.CrossRefPubMedGoogle Scholar
  29. Cohen, I. L., Vietze, P. M., Sudhalter, V., Jenkins, E. C., & Brown, W. T. (1991). Effects of age and communication level on eye contact in fragile X males and non-fragile X autistic males. American Journal of Medical Genetics Part A, 38(2-3), 498–502.CrossRefGoogle Scholar
  30. Craig, A. D. (2015). How do you feel?: An interoceptive moment with your neurobiological self. Princeton: Princeton University Press.CrossRefGoogle Scholar
  31. Dillman, D. A., Brown, T. L., Carlson, J. E., Carpenter, E. H., Lorenz, F. O., Mason, R., Saltiel, J., & Songster, R. L. (1995). Effects of category order on answers in mail and telephone surveys. Rural Sociology, 60(4), 674–687.CrossRefGoogle Scholar
  32. Dunn, W. (1997). The impact of sensory processing abilities on the daily lives of young children and their families: A conceptual model. Infants & Young Children, 9, 23–35.CrossRefGoogle Scholar
  33. Dunn, W. (2001). The sensations of everyday life: Empirical, theoretical, and pragmatic considerations. American Journal of Occupational Therapy, 55(6), 608–620.CrossRefPubMedGoogle Scholar
  34. Dunn, W. (2007). Supporting children to participate successfully in everyday life by using sensory processing knowledge. Infants & Young Children, 20(2), 84–101.CrossRefGoogle Scholar
  35. Dunn, W. (2014). Sensory Profile 2 manual. San Antonio, TX: Pearson.Google Scholar
  36. Dunn, W., & Daniels, D. B. (2002). Initial development of the infant/toddler sensory profile. Journal of Early Intervention, 25(1), 27–41.CrossRefGoogle Scholar
  37. Dunn, W., Saiter, J., & Rinner, L. (2002). Asperger syndrome and sensory processing: A conceptual model and guidance for intervention planning. Focus on Autism and Other Developmental Disabilities, 17(3), 172–185.CrossRefGoogle Scholar
  38. Engel-Yeger, B. (2012). Validating the Adolescent/Adult Sensory Profile and examining its ability to screen sensory processing difficulties among Israeli people. British Journal of Occupational Therapy, 75(7), 321–329.CrossRefGoogle Scholar
  39. Ermer, J., & Dunn, W. (1998). The sensory profile: A discriminant analysis of children with and without disabilities. American Journal of Occupational Therapy, 52(4), 283–290.CrossRefPubMedGoogle Scholar
  40. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.CrossRefGoogle Scholar
  41. Feinstein, C., & Reiss, A. L. (1998). Autism: The point of view from fragile X studies. Journal of Autism and Developmental Disorders, 28(5), 393–405.CrossRefPubMedGoogle Scholar
  42. Fleiss, J. L. (1981). Statistical methods for rates and proportions (2nd ed.). New York: John Wiley.Google Scholar
  43. Green, V. A., Pituch, K. A., Itchon, J., Choi, A., O’Reilly, M., & Sigafoos, J. (2006). Internet survey of treatments used by parents of children with autism. Research in Developmental Disabilities, 27(1), 70–84.CrossRefPubMedGoogle Scholar
  44. Hagerman, R. J. (2006). Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. Journal of Developmental & Behavioral Pediatrics, 27(1), 63–74.CrossRefGoogle Scholar
  45. Hall, S. S., Frank, M. C., Pusiol, G. T., Farzin, F., Lightbody, A. A., & Reiss, A. L. (2015). Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168(7), 564–572.CrossRefPubMedCentralGoogle Scholar
  46. Heilman, K. J., Harden, E. R., Zageris, D. M., Berry-Kravis, E., & Porges, S. W. (2011). Autonomic regulation in fragile X syndrome. Developmental Psychobiology, 53(8), 785–795.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Herman, M. A., Cruz, M. T., Sahibzada, N., Verbalis, J., & Gillis, R. A. (2009). GABA signaling in the nucleus tractus solitarius sets the level of activity in dorsal motor nucleus of the vagus cholinergic neurons in the vagovagal circuit. American Journal of Physiology-Gastrointestinal and Liver Physiology, 296(1), G101–G111.CrossRefPubMedGoogle Scholar
  48. Hernandez, R. N., Feinberg, R. L., Vaurio, R., Passanante, N. M., Thompson, R. E., & Kaufmann, W. E. (2009). Autism spectrum disorder in fragile X syndrome: A longitudinal evaluation. American Journal of Medical Genetics Part A, 149(6), 1125–1137.CrossRefGoogle Scholar
  49. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  50. Kaufmann, W. E., Cortell, R., Kau, A. S., Bukelis, I., Tierney, E., Gray, R. M., … Stanard, P. (2004). Autism spectrum disorder in fragile X syndrome: Communication, social interaction, and specific behaviors. American Journal of Medical Genetics Part A, 129(3), 225–234.CrossRefGoogle Scholar
  51. Kidd, S. A., Lachiewicz, A., Barbouth, D., Blitz, R. K., Delahunty, C., McBrien, D., … Berry-Kravis, E. (2014). Fragile X syndrome: A review of associated medical problems. Pediatrics, 134(5), 995–1005.CrossRefPubMedGoogle Scholar
  52. Klusek, J., Martin, G. E., & Losh, M. (2013). Physiological arousal in autism and fragile X syndrome: Group comparisons and links with pragmatic language. American Journal on Intellectual and Developmental Disabilities, 118, 475–495.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Klusek, J., Roberts, J. E., & Losh, M. (2015). Cardiac autonomic regulation in autism and Fragile X syndrome: A review. Psychological Bulletin, 141(1), 141.CrossRefPubMedGoogle Scholar
  54. Kolacz, J., Holochwost, S. J., Gariépy, J. L., & Mills-Koonce, W. R. (2016). Patterns of joint parasympathetic, sympathetic, and adrenocortical activity and their associations with temperament in early childhood. Developmental Psychobiology, 58(8), 990–1001.CrossRefPubMedGoogle Scholar
  55. Kolacz, J., Lewis, G. F., & Porges, S. W. (in press). The integration of vocal communication and biobehavioral state regulation in mammals: A polyvagal hypothesis. In S. M. Brudzynski (Ed.), Handbook of ultrasonic vocalization. Boston: ElsevierGoogle Scholar
  56. Krebs, D., & Hoffmeyer-Zlotnik, J. H. P. (2010). Positive first or negative first?: Effects of the order of answering categories on response behavior. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 6, 118–127.CrossRefGoogle Scholar
  57. Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.CrossRefPubMedGoogle Scholar
  58. Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37(5), 894–910.CrossRefPubMedGoogle Scholar
  59. Lewis, P., Abbeduto, L., Murphy, M., Richmond, E., Giles, N., Bruno, L., & Schroeder, S. (2006). Cognitive, language and social-cognitive skills of individuals with fragile X syndrome with and without autism. Journal of Intellectual Disability Research, 50(7), 532–545.CrossRefPubMedGoogle Scholar
  60. Little, L. M., Freuler, A. C., Houser, M. B., Guckian, L., Carbine, K., David, F. J., & Baranek, G. T. (2011). Psychometric validation of the sensory experiences questionnaire. American Journal of Occupational Therapy, 65(2), 207–210.CrossRefPubMedPubMedCentralGoogle Scholar
  61. McIntosh, D. N., Miller, L. J., & Shyu, V. (1999). Development and validation of the Short Sensory Profile. In W. Dunn (Ed.), Sensory profile manual (pp. 59–73). San Antonio, TX: Psychological Corporation.Google Scholar
  62. McNeish, D. (2017). Thanks coefficient alpha, we’ll take it from here. Psychological Methods. Advance online publication.Google Scholar
  63. Miller, L. J., McIntosh, D. N., McGrath, J., Shyu, V., Lampe, M., Taylor, A. K., … Hagerman, R. J. (1999). Electrodermal responses to sensory stimuli in individuals with fragile X syndrome. American Journal of Medical Genetics, 83(4), 268–279.CrossRefPubMedGoogle Scholar
  64. Muthén, L. K., & Muthén, B. O. (1998–2015). Mplus user’s guide. (7th Ed.), Los Angeles, CA: Muthén & Muthén.Google Scholar
  65. Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32(4), 301–318.CrossRefPubMedGoogle Scholar
  66. Porges, S. W. (1996). Physiological regulation in high-risk infants. A model for assessment and potential intervention. Development and Psychopathology, 8, 43–58.CrossRefGoogle Scholar
  67. Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42, 123–146.CrossRefPubMedGoogle Scholar
  68. Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116–143.CrossRefPubMedGoogle Scholar
  69. Porges, S. W. (2011). The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation. New York: WW Norton.Google Scholar
  70. Porges, S. W. (2012). The Brain-Body Center Sensory Scales (BBCSS). The Brain-Body Center. Chicago: University of Illinois at Chicago.Google Scholar
  71. Porges, S. W., & Lewis, G. F. (2009). The polyvagal hypothesis: Common mechanisms mediating autonomic regulation, vocalizations, and listening. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalizations: An integrative neuroscience approach (pp. 255–264). Amsterdam: Academic Press.Google Scholar
  72. Quinn, H. O. (2014). Bifactor models, explained common variance (ECV), and the usefulness of scores from unidimensional item response theory analyses. Unpublished Master’s thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC.Google Scholar
  73. R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  74. Raspa, M., Bailey, D. B. Jr., Bishop, E., Holiday, D., & Olmsted, M. (2010). Obesity, food selectivity, and physical activity in individuals with fragile X syndrome. American Journal on Intellectual and Developmental Disabilities, 115(6), 482–495.CrossRefPubMedGoogle Scholar
  75. Raspa, M., Wheeler, A. C., & Riley, C. (2017). Public health literature review of fragile X syndrome. Pediatrics, 139(Supplement 3), S153–S171.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74(1), 145–154.CrossRefGoogle Scholar
  77. Riley, C., Mailick, M., Berry-Kravis, E., & Bolen, J. (2017). The Future of fragile X syndrome: CDC stakeholder meeting summary. Pediatrics, 139(Supplement 3), S147–S152.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Roberts, J. E., Boccia, M. L., Bailey, D. B., Hatton, D. D., & Skinner, M. (2001). Cardiovascular indices of physiological arousal in boys with fragile X syndrome. Developmental Psychobiology, 39(2), 107–123.CrossRefPubMedGoogle Scholar
  79. Roberts, J. E., Hatton, D. D., Long, A. C., Anello, V., & Colombo, J. (2012a). Visual attention and autistic behavior in infants with fragile X syndrome. Journal of Autism and Developmental Disorders, 42, 937–946.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Roberts, J. E., Tonnsen, B., Robinson, A., & Shinkareva, S. V. (2012b). Heart activity and autistic behavior in infants and toddlers with fragile X syndrome. American Journal on Intellectual and Developmental Disabilities, 117, 90–102.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. Nature Reviews Neuroscience, 18(11), 671.CrossRefPubMedGoogle Scholar
  82. Rogers, S. J., Hepburn, S., & Wehner, E. (2003). Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. Journal of Autism and Developmental Disorders, 33(6), 631–642.CrossRefPubMedGoogle Scholar
  83. Rogmann, J. J. (2013). Ordinal dominance statistics (orddom): An R project for statistical computing package to compute ordinal, nonparametric alternatives to mean comparison (version 3.1). Available online from the CRAN website
  84. Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45(1), 73–103.CrossRefPubMedGoogle Scholar
  85. semTools Contributors. (2016). semTools: Useful tools for structural equation modeling. R package version 0.4–14. Retrived from
  86. Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420.CrossRefPubMedGoogle Scholar
  87. Stackhouse, T. M., Scharfenaker, S. K., Lachiewicz, A. M., Burgess, D., Hessl, D., Blitz, R., Burgess, K., Rohlik, D., Hess, L. G., Kidd, S. A., & Berry-Kravis, E. (2014). Sensory processing and integration issues in individuals with fragile X syndrome. Retrieved June 14, 2014, from
  88. Stapleton, C. (2013). The smart (phone) way to collect survey data. Survey Practice, 6(2), 1–7.CrossRefGoogle Scholar
  89. Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173–180.CrossRefPubMedGoogle Scholar
  90. Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. Paper presented at the annual spring meeting of the Psychometric Society, Iowa City, IA.Google Scholar
  91. Talay-Ongan, A., & Wood, K. (2000). Unusual sensory sensitivities in autism: A possible crossroads. International Journal of Disability, Development and Education, 47(2), 201–212.CrossRefGoogle Scholar
  92. Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. American Journal of Occupational Therapy, 61(2), 190–200.CrossRefPubMedGoogle Scholar
  93. Trizano-Hermosilla, I., & Alvarado, J. M. (2016). Best alternatives to Cronbach’s alpha reliability in realistic conditions: Congeneric and asymmetrical measurements. Frontiers in Psychology, 7, 769.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.CrossRefGoogle Scholar
  95. Weng, L. J., & Cheng, C. P. (2000). Effects of response order on Likert-type scales. Educational and psychological measurement, 60(6), 908–924.CrossRefGoogle Scholar
  96. Wheeler, A. C., Mussey, J., Villagomez, A., Bishop, E., Raspa, M., Edwards, A., Bodfish, J., Bann, C., & Bailey, D. B. (2014). DSM-5 changes and the prevalence of parent-reported autism spectrum symptoms in fragile X syndrome. Journal of Autism and Developmental Disorders, 45(3), 816–829.Google Scholar
  97. Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory factor analysis. Albany: State University of New York Press.Google Scholar
  98. Yuan, Z., Qin, W., Wang, D., Jiang, T., Zhang, Y., & Yu, C. (2012). The salience network contributes to an individual’s fluid reasoning capacity. Behavioural Brain Research, 229(2), 384–390.CrossRefPubMedGoogle Scholar
  99. Zhang, X. Y., Ai, H. B., & Cui, X. Y. (2006). Effects of nuclei ambiguus and dorsal motor nuclei of vagus on gastric H+ and HCO3-secretion in rats. World Journal of Gastroenterology, 12(20), 3271.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zhu, J., Chang, L., Xie, J., & Ai, H. (2016). Arginine vasopressin injected into the dorsal motor nucleus of the vagus inhibits gastric motility in rats. Gastroenterology Research and Practice, 2016, 4618672.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychology and NeuroscienceUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Traumatic Stress Research Consortium, Kinsey InstituteIndiana UniversityBloomingtonUSA
  3. 3.RTI InternationalResearch Triangle ParkUSA
  4. 4.Department of PsychiatryUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations