Advertisement

Journal of Autism and Developmental Disorders

, Volume 48, Issue 6, pp 2090–2100 | Cite as

Facilitating Neurofeedback in Children with Autism and Intellectual Impairments Using TAGteach

  • Kristen LaMarca
  • Richard Gevirtz
  • Alan J. Lincoln
  • Jaime A. Pineda
Original Paper

Abstract

Individuals with autism and intellectual impairments tend to be excluded from research due to their difficulties with methodological compliance. This study focuses on using Teaching with Acoustic Guidance—TAGteach—to behaviorally prepare children with autism and a IQ ≤ 80 to participate in a study on neurofeedback training (NFT). Seven children (ages 6–8) learned the prerequisite skills identified in a task analysis in an average of 5 h of TAGteach training, indicating that this is a feasible method of preparing intellectually-impaired children with autism to participate in NFT and task-dependent electroencephalography measures. TAGteach may thus have the potential to augment this population’s ability to participate in less accessible treatments and behavioral neuroscientific studies.

Keywords

Autism Low-functioning Intellectual impairment TAGteach Conditioned reinforcement Auditory secondary reinforcement Mirror neurons Mu rhythms Neurofeedback 

Notes

Acknowledgments

Thanks to Yvonne Searcy and Theresa McKeon for their assistance in training the instructors to implement TAGteach.

Author Contributions

All authors contributed to the research design, data analyses and interpretation, and writing and preparing of the manuscript. KL conducted the diagnostic assessments, TAGteach training, and data collection. AL supervised the diagnostic testing. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors disclose no conflicts of interest.

References

  1. American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th edn.). Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
  2. Anagnostou, E., & Taylor, M. J. (2011). Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Molecular Autism, 2(1), 4.  https://doi.org/10.1186/2040-2392-2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnstein, D., Cui, F., Keysers, C., Maurits, N. M., & Gazzola, V. (2011). µ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience, 31, 14243–14249.  https://doi.org/10.1523/jneurosci.0963-11.2011.CrossRefPubMedGoogle Scholar
  4. Barbera, M. L. (2010). The use of TAGteach to improve the acquisition of instruction following in children with autism. In T. McKeon, & J. Vargas, Recent findings using TAGteach in diverse populations and applications such as autism and commercial fishermen. San Antonio, TX: Symposium conducted at the Association for Behavior Analysis International 36th Annual Convention.Google Scholar
  5. Ben-Itzchak, E., & Zachor, D. A. (2011). Who benefits from early intervention in autism spectrum disorders? Research in Autism Spectrum Disorders, 5(1), 345–350.  https://doi.org/10.1016/j.rasd.2010.04.018.CrossRefGoogle Scholar
  6. Bernier, R., Dawson, G., Webb, S., & Murias, M. (2007). EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cognition, 64, 228–237.  https://doi.org/10.1016/j.bandc.2007.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Christensen, D. L., Baio, J., Braun, K. V. N., Bilder, D., Charles, J., Constantino, J. N., & Yeargin-Allsopp, M. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2012. Morbidity and Mortality Weekly Report Surveillance Summaries, 65, 1–23.PubMedGoogle Scholar
  8. Coben, R., Linden, M., & Myers, T. E. (2010). Neurofeedback for autistic spectrum disorder: A review of the literature. Applied Psychophysiology and Biofeedback, 35, 83–105.  https://doi.org/10.1007/s10484-009-9117-y.CrossRefPubMedGoogle Scholar
  9. Coben, R., Sherlin, L., Hudspeth, W. J., McKeon, K., & Ricca, R. (2014). Connectivity-guided EEG biofeedback for autism spectrum disorder: Evidence of neurophysiological changes. NeuroRegulation, 1(2), 109–130.  https://doi.org/10.15540/nr.1.2.109.CrossRefGoogle Scholar
  10. Cortese, S., Ferrin, M., Brandeis, D., Holtmann, M., Aggensteiner, P., Daley, D., Santosh, P., Simonoff, E., Stevenson, J., Stringaris, A., & Sonuga-Barke, E. J. S. (2016). Neurofeedback for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. Journal of the American Academy of Child & Adolescent Psychiatry, 55(6), 444–455.  https://doi.org/10.1016/j.jaac.2016.03.007.CrossRefGoogle Scholar
  11. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.  https://doi.org/10.1038/nn1611.CrossRefPubMedGoogle Scholar
  12. Datko, M., Pineda, J. A., & Müller, R.-A. (2017). Positive effects of neurofeedback on autism symptoms correlate with brain activation during imitation and observation. European Journal of Neuroscience.  https://doi.org/10.1111/ejn.13551.PubMedGoogle Scholar
  13. de Hamilton, A. F. C (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91–105.  https://doi.org/10.1016/j.dcn.2012.09.008.CrossRefPubMedGoogle Scholar
  14. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180.  https://doi.org/10.1007/BF00230027.CrossRefPubMedGoogle Scholar
  15. Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. J. (2010). Normal movement selectivity in autism. Neuron, 66(3), 461–469.  https://doi.org/10.1016/j.neuron.2010.03.034.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Duffy, F., & Als, H. (2012). A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls—a large case control study. BMC Medicine, 10, 64.  https://doi.org/10.1186/1741-7015-10-64.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Enticott, P. G., Kennedy, H. A., Rinehart, N. J., Bradshaw, J. L., Tonge, B. J., Daskalakis, Z. J., & Fitzgerald, P. B. (2013). Interpersonal motor resonance in autism spectrum disorder: Evidence against a global “mirror system” deficit. Frontiers in Human Neuroscience, 7, 218.  https://doi.org/10.3389/fnhum.2013.00218.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fox, N. A., Bakermans-Kranenburg, M. J., Yoo, K. H., Bowman, L. C., Cannon, E. N., Vanderwert, R. E., Ferrari, P. F., & van Ijzendoorn, M. H. (2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142(3), 291–313.  https://doi.org/10.1037/bul0000031.CrossRefPubMedGoogle Scholar
  19. Friedrich, E. V. C., Sivanathan, A., Lim, T., Suttie, N., Louchart, S., Pillen, S., & Pineda, J. A. (2015). An effective neurofeedback intervention to improve social interactions in children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 45(12), 4084–4100.  https://doi.org/10.1007/s10803-015-2523-5.CrossRefPubMedGoogle Scholar
  20. Friedrich, E. V. C., Suttie, N., Sivanathan, A., Lim, T., Louchart, S., & Pineda, J. A. (2014). Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Frontiers in Neuroengineering.  https://doi.org/10.3389/fneng.2014.00021.Google Scholar
  21. Granpeesheh, D., Tarbox, J., & Dixon, D. R. (2009). Applied behavior analytic interventions for children with autism: A description and review of treatment research. Annals of Clinical Psychiatry, 21(3), 162–173.PubMedGoogle Scholar
  22. Hall, L., & Kelley, E. (2013). The contribution of epigenetics to understanding genetic factors in autism. Autism, 8(8), 872–881.  https://doi.org/10.1177/1362361313503501.Google Scholar
  23. Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21, 1229–1243.  https://doi.org/10.1162/jocn.2009.21189.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hobson, H. M., & Bishop, D. V. M. (2016). Mu suppression: A good measure of the human mirror neuron system? Cortex, 82, 290–310.  https://doi.org/10.1016/j.cortex.2016.03.019.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hofvander, B., Delorme, R., Chaste, P., Nydén, A., Wentz, E., Ståhlberg, O., Herbrecht, E., Stopin, A., Anckarsäter, H., Gillberg, C., Råstam, M., & Leboyer, M. (2009). Psychiatric and psychosocial problems in adults with normal-intelligence autism spectrum disorders. BMC Psychiatry, 9, 35.  https://doi.org/10.1186/1471-244X-9-35.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Holtmann, S., Steiner, S., Hohmann, S., Poutska, L., Banashewski, T., & Bolte, S. (2011). Neurofeedback in autism spectrum disorders. Developmental Medicine and Child Neurology, 53(11), 986–993.  https://doi.org/10.1111/j.1469-8749.2011.04043.x.CrossRefPubMedGoogle Scholar
  27. Howlin, P., Moss, P., Savage, S., & Rutter, M. (2013). Social outcomes in mid- to later adulthood among individuals diagnosed with autism and average nonverbal IQ as children. Journal of the American Academy of Child & Adolescent Psychiatry, 52(6), 572–581.  https://doi.org/10.1016/j.jaac.2013.02.017.CrossRefGoogle Scholar
  28. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Review Neuroscience, 7(12), 942–951.  https://doi.org/10.1038/nrn2024.CrossRefGoogle Scholar
  29. Kahn, A. J., Nair, A., Keown, C. L., Datko, M. C., Lincoln, A. J., & Müller, R.-A. (2015). Cerebro-cerebellar resting-state functional connectivity in children and adolescents with autism spectrum disorder. Biological Psychiatry, 78(9), 625–634.  https://doi.org/10.1016/j.biopsych.2015.03.024.CrossRefGoogle Scholar
  30. Krebs-Seida, J. (2009). Systematic reviews of psychosocial interventions for autism: An umbrella review. Developmental Medicine & Child Neurology.  https://doi.org/10.1111/j.1469-8749.2008.03211.x.Google Scholar
  31. LaMarca, K., Gevirtz, R., Lincoln, A., & Pineda, J. A. (2013). Teaching with acoustic guidance the operant conditioning of EEG in children with autism: A feasibility study (doctoral dissertation). Retrieved from ProQuest (AN: 3587348).Google Scholar
  32. LaVaque, J., & Moss, D. (2003). QEEG and EEG biofeedback in the diagnosis and treatment of psychiatric and neurological disorders: An authentic complementary therapy. Biofeedback, 31(3), 25–28.Google Scholar
  33. Levy, A., & Perry, A. (2011). Outcomes in adolescents and adults with autism: A review of the literature. Research in Autism Spectrum Disorders, 5(4), 1271–1282.  https://doi.org/10.1016/j.rasd.2011.01.023.CrossRefGoogle Scholar
  34. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (2002). Autism diagnostic observation schedule, Los Angeles: Western Psychological Services.Google Scholar
  35. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.  https://doi.org/10.1007/BF02172145.CrossRefPubMedGoogle Scholar
  36. Lugnegard, T., Hallerback, M. U., & Gillberg, C. (2011). Psychiatric comorbidity in young adults with a clinical diagnosis of Asperger syndrome. Research in Developmental Disabilities, 32, 1910–1917.  https://doi.org/10.1016/j.ridd.2011.03.025.CrossRefPubMedGoogle Scholar
  37. Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology, and clinical applications. Basic Clinical Neuroscience, 7(2), 143–158.  https://doi.org/10.15412/J.BCN.03070208.PubMedPubMedCentralGoogle Scholar
  38. Matson, J. L., & Shoemaker, M. (2009). Intellectual disability and its relationship to autism spectrum disorders. Research in Developmental Disabilities, 30(6), 1107–1114.  https://doi.org/10.1016/j.ridd.2009.06.003.CrossRefPubMedGoogle Scholar
  39. Mayer, K., & Arns, M. (2016). Electroencephalogram neurofeedback: Application in ADHD and epilepsy. Psychiatric Annals, 46(10), 594–600.  https://doi.org/10.3928/00485713-20160906-01.CrossRefGoogle Scholar
  40. McSweeney, F. K., & Murphy, E. S. (2014). The wiley blackwell handbook of operant and classical conditioning. Malden: Wiley.CrossRefGoogle Scholar
  41. Mohammad-Rezazadeh, I., Frohlich, J., Loo, S. K., & Jeste, S. S. (2016). Brain connectivity in autism spectrum disorder. Current Opinion Neurology, 29, 137–147.  https://doi.org/10.1097/WCO.0000000000000301.CrossRefGoogle Scholar
  42. Morien, M., & Eshleman, J. (2010). The effects of TAGteach methods on sign language object-naming skills in non-vocal children with autism. San Antonio, TX: Poster presented at the Association for Behavior Analysis International 36th Annual Convention.Google Scholar
  43. Mostofsky, S. H., Dubey, P., Jerath, V. K., Jansiewicz, E. M., Goldberg, M. C., & Denckla, M. B. (2006). Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. Journal of International Neuropsychology Society, 12, 314–326.  https://doi.org/10.1017/S1355617706060437.CrossRefGoogle Scholar
  44. Mukamel, E., Kaplan, I., & Fried (2010). Single-neuron responses in humans during execution and observation of actions.. Current Biology, 20, 750–756.  https://doi.org/10.1016/j.cub.2010.02.045.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Müller, R.-A., Shih, P., Keehn, B., Deyoe, J. R., Leyden, K. M., & Shukla, D. K. (2011). Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex, 21, 2233–2243.  https://doi.org/10.1093/cercor/bhq296.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Neuringer, A. (2002). Operant variability: Evidence, functions and theory. Psychonomic Bulletin Review, 9(4), 672–705.  https://doi.org/10.3758/bf03196324Gazzo.CrossRefPubMedGoogle Scholar
  47. Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Research Cognitive Brain Research, 24(2), 190–198.  https://doi.org/10.1016/j.cogbrainres.2005.01.014.CrossRefPubMedGoogle Scholar
  48. Oberman, L. M., McCleery, J. P., Hubard, E. M., Bernier, R., Wiersema, J. R., Raymaekers, R., & Pineda, J. A. (2013). Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 8(3), 300–304.  https://doi.org/10.1093/scan/nsr097.CrossRefPubMedGoogle Scholar
  49. Parellada, M., Penzol, M. J., Pina, L., Moreno, C., Gonza ́lez-Vioque, E., Zalsman, G., & Arango, C. (2013). The neurobiology of autism spectrum disorders. European Psychiatry, 29(1), 11–19.  https://doi.org/10.1016/j.eurpsy.2013.02.005.CrossRefPubMedGoogle Scholar
  50. Perkins, T., Stokes, M., McGillivray, J., & Bittar, R. (2010). Mirror neuron dysfunction in autism spectrum disorders. Journal of Clinical Neuroscience, 17(10), 1239–1243.  https://doi.org/10.1016/j/jocn.2010.01.026.CrossRefPubMedGoogle Scholar
  51. Persicke, A., Jackson, M., & Adams, A. N. (2014). Brief report: An evaluation of TAGteach components to decrease toe-walking in a 4-year-old child with autism. Journal of Autism and Developmental Disorders, 44, 965–968.  https://doi.org/10.1007/s10803-013-1934-4.CrossRefPubMedGoogle Scholar
  52. Pineda, J. A. (2005a). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190–198.  https://doi.org/10.1016/j.cogbrainres.2005.01.014.CrossRefPubMedGoogle Scholar
  53. Pineda, J. A. (2005b). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Research Brain Research Review, 50(1), 57–68.  https://doi.org/10.1016/j.brainresrev.2005.04.005.CrossRefGoogle Scholar
  54. Pineda, J. A., Brang, D., Hecht, E., Edwards, L., Carey, S., Bacon, M., Futagati, C., Suk, D., Tom, J., Bimbaum, C., & Rork, A. (2008). Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Research in Autism Spectrum Disorders, 2(3), 557–581.  https://doi.org/10.1016/j.rasd.2007.12.003.CrossRefGoogle Scholar
  55. Pineda, J. A., Carrasco, K., Datko, M. C., Pillen, S., & Shalles, M. (2014a). Neurofeedback training produces positive changes in behavioural and electrophysiological measures of high-functioning autism. Philisophical Transactions of the Royal Society B.  https://doi.org/10.1098/rstb.2013.0183.Google Scholar
  56. Pineda, J. A., Friedrich, E. V. C., & LaMarca, K. (2014b). Neurorehabilitation of social dysfunctions: A model-based neurofeedback approach for low and high-functioning autism. Frontiers in Neuroengineering.  https://doi.org/10.3389/fneng.2014.00029.Google Scholar
  57. Pineda, J. A., Juavinett, A., & Datko, M. (2012). Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Medical Hypotheses, 79, 790–798.  https://doi.org/10.1016/j.mehy.2012.08.031.CrossRefPubMedGoogle Scholar
  58. Rane, P., Cochran, D., Hodge, S. M., Haselgrove, A. B., Kennedy, D., & Frazier, J. A. (2015). Connectivity in autism: A review of MRI connectivity studies. Harvard Review Psychiatry, 23(4), 223–244.  https://doi.org/10.1097/HRP.0000000000000072.CrossRefGoogle Scholar
  59. Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., & Baird, G. (2008). Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population- derived sample. Journal of American Academy of Child and Adolescent Psychiatry, 47, 921–929.  https://doi.org/10.1097/CHI.0b013e318179964f.CrossRefGoogle Scholar
  60. Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.Google Scholar
  61. Stieglitz Ham, H., Bartolo, A., Corley, M., Rajendran, G., Szabo, A., & Swanson, S. (2011). Exploring the relationship between gestural recognition and imitation: Evidence of dyspraxia in autism spectrum disorders. Journal of Autism and Developmental Disorders, 41, 1–12.  https://doi.org/10.1007/s10803-010-1011-1.CrossRefPubMedGoogle Scholar
  62. Tan, G., Thornby, J., Hammond, D. C., Strehl, U., Canady, B., Arnemann, K., & Kaiser, D. A. (2009). Meta-analysis of EEG biofeedback in treating epilepsy. Clinical EEG Neuroscience, 40(3), 173–179.  https://doi.org/10.1177/155005940904000310.CrossRefPubMedGoogle Scholar
  63. Vargas, J. S. (2009). Behavior analysis for effective teaching. New York: Routledge.Google Scholar
  64. Walker, J. E. (2008). Power spectral frequency and coherence abnormalities in patients with intractable epilepsy and their usefulness in long-term remediation of seizures using neurofeedback. Clinical EEG Neuroscience, 39, 203–205.  https://doi.org/10.1177/155005940803900410.CrossRefPubMedGoogle Scholar
  65. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence (WASI). San Antonio: Pearson Assessment.Google Scholar
  66. Williams, J. H., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience & Biobehavioral Reviews, 25, 287–295.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kristen LaMarca
    • 1
    • 3
  • Richard Gevirtz
    • 1
  • Alan J. Lincoln
    • 1
  • Jaime A. Pineda
    • 2
  1. 1.Department of Clinical Psychology, California School of Professional PsychologyAlliant UniversitySan DiegoUSA
  2. 2.Department of Cognitive NeuroscienceUniversity of CaliforniaSan DiegoUSA
  3. 3.VistaUSA

Personalised recommendations