Advertisement

Not So Fast: Autistic traits and Anxious Apprehension in Real-World Visual Search Scenarios

  • N. C. C. Russell
  • S. G. Luke
  • R. A. Lundwall
  • M. SouthEmail author
Original Paper

Abstract

Autistic individuals have shown superior performance in simple, albeit difficult, visual search tasks. We compared eye movements and behavioral markers across two visual search tasks based on real-world scenes in young adults. Context-aided search increased speed and accuracy for all groups. Autistic adults (n = 29) were on average consistently slower and less accurate than a non-anxious neurotypical comparison group (n = 48), but similar to neurotypical adults with elevated anxious apprehension (n = 26). Dimensional analyses suggest that autism traits, not anxious apprehension, are most associated with search efficiency of naturalistic stimuli suggesting that autistic individuals can effectively integrate contextual information to aid visual search, but that advantages in less visually complex tasks, reported in previous studies, may not transfer to situations involving real-world scenes.

Keywords

Autism Anxiety Visual search Eye tracking Contextual integration 

Notes

Acknowledgments

We would like to thank Kevin G. Stephenson, David N. Top, Taylor Shuman, AnnaLisa Ward-Carr, and Laurel Peacock for help with recruitment and data collection.

Author Contributions

MS, SGL, and RAL conceived of the study and participated in its design and coordination. SGL and NCCR performed the statistical analysis. MS, SGL, and NCCR participated in the interpretation of the data. NCCR drafted the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. Journal of autism and developmental disorders, 31(1), 5–17.Google Scholar
  2. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. Retrieved from http://CRAN.R-project.org/package=lme4.
  3. Bayliss, A. P., & Kritikos, A. (2011). Brief report: Perceptual load and the Autism Spectrum in typically developed individuals. Journal of Autism and Developmental Disorders, 41(11), 1573–1578.  https://doi.org/10.1007/s10803-010-1159-8.Google Scholar
  4. Benson, V., Castelhano, M. S., Au-Yeung, S. K., & Rayner, K. (2012). Eye movements reveal no immediate “WOW”(“which one’s weird”) effect in autism spectrum disorder. The Quarterly Journal of Experimental Psychology, 65(6), 1139–1150.Google Scholar
  5. Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the Autism Spectrum Disorder (ASD) advantage in visual tasks. Scientific Reports, 4, 4301.  https://doi.org/10.1038/srep04301.
  6. Booth, R. D., & Happé, F. G. (2018). Evidence of reduced global processing in autism spectrum disorder. Journal of Autism and Developmental Disorders, 48(4), 1397–1408.Google Scholar
  7. Brosnan, M. J., Scott, F. J., Fox, S., & Pye, J. (2004). Gestalt processing in autism: Failure to process perceptual relationships and the implications for contextual understanding. Journal of Child Psychology and Psychiatry, 45(3), 459–469.Google Scholar
  8. Chamberlain, P. D., Rodgers, J., Crowley, M. J., White, S. E., Freeston, M. H., & South, M. (2013). A potentiated startle study of uncertainty and contextual anxiety in adolescents diagnosed with autism spectrum disorder. Molecular autism, 4(1), 31.Google Scholar
  9. Cheie, L., Visu-Petra, L., & Miclea, M. (2012). Trait anxiety, visual search and memory for facial identities in preschoolers: An investigation using task-irrelevant emotional information. Procedia Social and Behavioral Sciences, 33, 622–626.Google Scholar
  10. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.Google Scholar
  11. Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., … Reich, W. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427–433.Google Scholar
  12. D’Souza, D., Booth, R., Connolly, M., Happé, F., & Karmiloff-Smith, A. (2016). Rethinking the concepts of ‘local or global processors’: Evidence from Williams syndrome, Down syndrome, and Autism Spectrum Disorders. Developmental Science, 19(3), 452–468.Google Scholar
  13. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507.Google Scholar
  14. Evans, K. K., Birdwell, R. L., & Wolfe, J. M. (2013). If you don’t find it often, you often don’t find it: Why some cancers are missed in breast cancer screening. PLoS ONE, 8(5), e64366.Google Scholar
  15. Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18(11), 943–947.Google Scholar
  16. Freeth, M., Foulsham, T., & Chapman, P. (2011). The influence of visual saliency on fixation patterns in individuals with autism spectrum disorders. Neuropsychologia, 49(1), 156–160.Google Scholar
  17. Glod, M., Creswell, C., Waite, P., Jamieson, R., McConachie, H., South, M. D., & Rodgers, J. (2017). Comparisons of the factor structure and measurement invariance of the spence children’s anxiety scale—Parent version in children with autism spectrum disorder and typically developing anxious children. Journal of Autism and Developmental Disorders, 47(12), 3834–3846.Google Scholar
  18. Goh, W. X., Lim, B. H. Y., Wylde, M. J., Macnaughton, M., Chow, J. Y., & Lee, M. J. C. (2018). Pre-movement and during-movement visual search behaviours vary depending on expertise and anxiety levels in ten-pin bowling. Journal of Sports Sciences, 1–11.  https://doi.org/10.1080/02640414.2018.1436764.
  19. Gonzalez, C., Martin, J. M., Minshew, N. J., & Behrmann, M. (2013). Practice makes improvement: How adults with autism out-perform others in a naturalistic visual search task. Journal of Autism and Developmental Disorders, 43(10), 2259–2268.Google Scholar
  20. Greene, C. M., Murphy, G., & Januszewski, J. (2017). Under high perceptual load, observers look but do not see. Applied Cognitive Psychology, 31(4), 431–437.  https://doi.org/10.1002/acp.3335.Google Scholar
  21. Heaton, T. J., & Freeth, M. (2016). Reduced visual exploration when viewing photographic scenes in individuals with autism spectrum disorder. Journal of Abnormal Psychology, 125(3), 399.Google Scholar
  22. Hessels, R. S., Hooge, I. T., Snijders, T. M., & Kemner, C. (2014). Is there a limit to the superiority of individuals with ASD in visual search? Journal of Autism and Developmental Disorders, 44(2), 443–451.Google Scholar
  23. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.Google Scholar
  24. Jolliffe, T., & Baron-Cohen, S. (2001). A test of central coherence theory: Can adults with high-functioning autism or Asperger syndrome integrate objects in context? Visual Cognition, 8(1), 67–101.Google Scholar
  25. Kaldy, Z., Giserman, I., Carter, A. S., & Blaser, E. (2016). The mechanisms underlying the ASD advantage in visual search. Journal of Autism and Developmental Disorders, 46(5), 1513–1527.Google Scholar
  26. Kana, R. K., Libero, L. E., & Moore, M. S. (2011). Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Physics of Life Reviews, 8(4), 410–437.  https://doi.org/10.1016/j.plrev.2011.10.001.Google Scholar
  27. Keehn, B., Müller, R.-A., & Townsend, J. (2013). Atypical attentional networks and the emergence of autism. Neuroscience and Biobehavioral Reviews, 37(2), 164–183.  https://doi.org/10.1016/j.neubiorev.2012.11.014.Google Scholar
  28. Kemner, C., van Ewijk, L., van Engeland, H., & Hooge, I. (2008). Brief report: Eye movements during visual search tasks indicate enhanced stimulus discriminability in subjects with PDD. Journal of Autism and Developmental Disorders, 38(3), 553–557.Google Scholar
  29. Kerns, C. M., Rump, K., Worley, J., Kratz, H., McVey, A., Herrington, J., & Miller, J. (2016). The differential diagnosis of anxiety disorders in cognitively-able youth with autism. Cognitive and Behavioral Practice, 23(4), 530–547.Google Scholar
  30. Kikuchi, Y., Senju, A., Akechi, H., Tojo, Y., Osanai, H., & Hasegawa, T. (2011). Atypical disengagement from faces and its modulation by the control of eye fixation in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 41(5), 629–645.Google Scholar
  31. Kingstone, A., Smilek, D., Ristic, J., Friesen, K., C., & Eastwood, J. D. (2003). Attention, researchers! It is time to take a look at the real world. Current Directions in Psychological Science, 12(5), 176–180.Google Scholar
  32. Kourkoulou, A., Kuhn, G., Findlay, J. M., & Leekam, S. R. (2013). Eye movement difficulties in autism spectrum disorder: Implications for implicit contextual learning. Autism Research, 6(3), 177–189.Google Scholar
  33. Kunar, M. A., Rich, A. N., & Wolfe, J. M. (2010). Spatial and temporal separation fails to counteract the effects of low prevalence in visual search. Visual Cognition, 18(6), 881–897.Google Scholar
  34. Kunar, M. A., & Watson, D. G. (2011). Visual search in a multi-element asynchronous dynamic (MAD) world. Journal of Experimental Psychology: Human Perception and Performance, 37(4), 1017.Google Scholar
  35. Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75–82.  https://doi.org/10.1016/j.tics.2004.12.004.Google Scholar
  36. Little, J.-A. (2018). Vision in children with autism spectrum disorder: A critical review. Clinical & Experimental Optometry.  https://doi.org/10.1111/cxo.12651.Google Scholar
  37. Locke, B. D., Buzolitz, S., Lei, J., Boswell, P.-W., McAleavey, J. F., Sevig, A. A., T. D., … Hayes, J. A (2011). Development of the Counseling Center Assessment of Psychological Symptoms-62 (CCAPS-62). Journal of Counseling Psychology, 58(1), 97–109.Google Scholar
  38. López, B., & Leekam, S. R. (2003). Do children with autism fail to process information in context? Journal of Child Psychology and Psychiatry, 44(2), 285–300.Google Scholar
  39. Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule (2nd ed.). Torrance: Western Psychological Services.Google Scholar
  40. Luke, S. G., Darowski, E. S., & Gale, S. D. (2018). Predicting eye movement characteristics across multiple tasks from working memory and executive control. Memory & Cognition, 46(5), 826–839.Google Scholar
  41. Maisel, M. E., Stephenson, K. G., South, M., Rodgers, J., Freeston, M. H., & Gaigg, S. B. (2016). Modeling the cognitive mechanisms linking autism symptoms and anxiety in adults. Journal of Abnormal Psychology, 125(5), 692–703.  https://doi.org/10.1037/abn0000168.Google Scholar
  42. Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8–8.Google Scholar
  43. Meyer, T. J., Miller, M. L., Metzger, R. L., & Borkovec, T. D. (1990). Development and validation of the Penn State Worry Questionnaire. Behaviour Research and Therapy, 28(6), 487–495.Google Scholar
  44. Mikita, N., Simonoff, E., Pine, D. S., Goodman, R., Artiges, E., Banaschewski, T., … Conrod, P. J. (2016). Disentangling the autism—anxiety overlap: FMRI of reward processing in a community-based longitudinal study. Translational psychiatry, 6(6), e845.Google Scholar
  45. Moseley, R. L., Ypma, R. J. F., Holt, R. J., Floris, D., Chura, L. R., Spencer, M. D., … Rubinov, M. (2015). Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. Neuroimage: Clinical, 9, 140–152.  https://doi.org/10.1016/j.nicl.2015.07.015.Google Scholar
  46. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.Google Scholar
  47. Mulckhuyse, M., Engelmann, J. B., Schutter, D. J., & Roelofs, K. (2017). Right posterior parietal cortex is involved in disengaging from threat: a 1-Hz rTMS study. Social Cognitive and Affective Neuroscience, 12(11), 1814–1822.Google Scholar
  48. Neider, M. B., & Zelinsky, G. J. (2006). Scene context guides eye movements during visual search. Vision Research, 46(5), 614–621.Google Scholar
  49. O’Riordan, M., & Plaisted, K. (2001). Enhanced discrimination in autism. The Quarterly Journal of Experimental Psychology: Section A, 54(4), 961–979.Google Scholar
  50. O’Riordan, M. A. (2004). Superior visual search in adults with autism. Autism, 8(3), 229–248.Google Scholar
  51. Parkin, B. L., & Walsh, V. (2017). Gunslingers, poker players, and chickens 3: Decision making under mental performance pressure in junior elite athletes. Progress in Brain Research, 234, 339–359.  https://doi.org/10.1016/bs.pbr.2017.08.011.Google Scholar
  52. Pine, D. S., Guyer, A. E., Goldwin, M., Towbin, K. A., & Leibenluft, E. (2008). Autism spectrum disorder scale scores in pediatric mood and anxiety disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 47(6), 652–661.  https://doi.org/10.1097/CHI.0b013e31816bffa5.Google Scholar
  53. R Core Development Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org.
  54. Remington, A. M., Swettenham, J. G., & Lavie, N. (2012). Lightening the load: Perceptual load impairs visual detection in typical adults but not in autism. Journal of Abnormal Psychology, 121(2), 544–551.  https://doi.org/10.1037/a0027670.Google Scholar
  55. Russell, N. C. C., & Kunar, M. A. (2012). Colour and spatial cueing in low-prevalence visual search. The Quarterly Journal of Experimental Psychology, 65(7), 1327–1344.Google Scholar
  56. Scherff, A., Taylor, M., Eley, T. C., Happé, F., Charman, T., & Ronald, A. (2014). What causes internalising traits and autistic traits to co-occur in adolescence? A community-based twin study. Journal of Abnormal Child Psychology, 42(4), 601–610.  https://doi.org/10.1007/s10802-013-9796-y.Google Scholar
  57. Shirama, A., Kato, N., & Kashino, M. (2017). When do individuals with autism spectrum disorder show superiority in visual search? Autism, 21(8), 942–951.Google Scholar
  58. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739.Google Scholar
  59. Song, Y., Hakoda, Y., Sanefuji, W., & Cheng, C. (2015). Can they see it? The functional field of view is narrower in individuals with autism spectrum disorder. PloS ONE. 10(7), e0133237.Google Scholar
  60. South, M., Carr, A. W., Stephenson, K. G., Maisel, M. E., & Cox, J. C. (2017). Symptom overlap on the srs-2 adult self-report between adults with asd and adults with high anxiety. Autism Research, 10(7), 1215–1220.Google Scholar
  61. South, M., Larson, M. J., White, S. E., Dana, J., & Crowley, M. J. (2011). Better fear conditioning is associated with reduced symptom severity in autism spectrum disorders. Autism Research, 4(6), 412–421.Google Scholar
  62. South, M., & Rodgers, J. (2017). Sensory, emotional and cognitive contributions to anxiety in autism spectrum disorders. Frontiers in Human Neuroscience, 11, 20.Google Scholar
  63. Van der Hallen, R., Evers, K., Brewaeys, K., Van den Noortgate, W., & Wagemans, J. (2015). Global processing takes time: A meta-analysis on local–global visual processing in ASD. Psychological Bulletin, 141(3), 549.Google Scholar
  64. Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, some types of rare targets are frequently missed. Attention, Perception, & Psychophysics, 71(3), 541–553.Google Scholar
  65. Vanmarcke, S., Mullin, C., Van der Hallen, R., Evers, K., Noens, I., Steyaert, J., & Wagemans, J. (2016). In the eye of the beholder: Rapid visual perception of real-life scenes by young adults with and without ASD. Journal of Autism and Developmental Disorders, 46(8), 2635–2652.Google Scholar
  66. Vater, C., Roca, A., & Williams, A. M. (2016). Effects of anxiety on anticipation and visual search in dynamic, time-constrained situations. Sport, Exercise, and Performance Psychology, 5(3), 179.Google Scholar
  67. Võ, M. L. H., & Henderson, J. M. (2009). Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention during scene perception. Journal of Vision, 9(3), 24–24.Google Scholar
  68. Wang, S., Jiang, M., Duchesne, X. M., Laugeson, E. A., Kennedy, D. P., Adolphs, R., & Zhao, Q. (2015). Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron, 88(3), 604–616.Google Scholar
  69. Wechsler, D. (2011). Wechsler abbreviated scale of intelligence—Second edition (WASI-II). San Antonio, TX: NCS Pearson.Google Scholar
  70. White, S. W., Mazefsky, C. A., Dichter, G. S., Chiu, P. H., Richey, J. A., & Ollendick, T. H. (2014). Social-cognitive, physiological, and neural mechanisms underlying emotion regulation impairments: Understanding anxiety in autism spectrum disorder. International Journal of Developmental Neuroscience, 39, 22–36.Google Scholar
  71. Wieser, M. J., Hambach, A., & Weymar, M. (2018). Neurophysiological correlates of attentional bias for emotional faces in socially anxious individuals—Evidence from a visual search task and N2pc. Biological Psychology, 132, 192–200.Google Scholar
  72. Williams, A. M., Vickers, J., & Rodrigues, S. (2002). The effects of anxiety on visual search, movement kinematics, and performance in table tennis: A test of Eysenck and Calvo’s processing efficiency theory. Journal of Sport & Exercise Psychology, 24(4), 438–455.Google Scholar
  73. Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention. London: University College London Press.Google Scholar
  74. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Cognitive psychology: Rare items often missed in visual searches. Nature, 435(7041), 439.Google Scholar
  75. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology, 136(4), 623–638.  https://doi.org/10.1037/0096-3445.136.4.623.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. C. C. Russell
    • 1
  • S. G. Luke
    • 1
    • 2
  • R. A. Lundwall
    • 1
    • 2
  • M. South
    • 1
    • 2
    Email author
  1. 1.Department of PsychologyBrigham Young UniversityProvoUSA
  2. 2.Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUSA

Personalised recommendations