Journal of Autism and Developmental Disorders

, Volume 46, Issue 12, pp 3623–3639 | Cite as

Cognitive Mechanisms Underlying Action Prediction in Children and Adults with Autism Spectrum Condition

  • Tobias SchuwerkEmail author
  • Beate Sodian
  • Markus Paulus
Original Paper


Recent research suggests that impaired action prediction is at the core of social interaction deficits in autism spectrum condition (ASC). Here, we targeted two cognitive mechanisms that are thought to underlie the prediction of others’ actions: statistical learning and efficiency considerations. We measured proactive eye movements of 10-year-old children and adults with and without ASC in anticipation of an agent’s repeatedly presented action. Participants with ASC showed a generally weaker tendency to generate action predictions. Further analyses revealed that statistical learning led to systematic accurate action predictions in the control groups. Participants with ASC were impaired in their ability to use frequency information for action predictions. Our findings inform etiological models of impaired social interaction in ASC.


Anticipatory looking Action prediction Teleological reasoning Autism spectrum condition Statistical learning 



We are grateful to all participants and parents who took part in the study. We thank Nicosia Nieß and Gertrud Niggemann (Autismus Oberbayern e.V.), Martina Schabert (Autismuszentrum Oberbayern), and Martin Sobanski (Heckscher-Klinikum gGmbH) for their continuous help with recruiting participants. We further thank the whole LMU Babylab for help in data acquisition. Thanks are due to Irina Jarvers for her help in preprocessing gaze data.

Author Contributions

Conceptualization, TS and MP; Methodology, TS and MP; Formal Analysis, TS; Investigation, TS; Resources, BS; Writing-Original Draft, TS; Writing-Review & Editing, TS, MP and BS; Visualization, TS; Supervision, MP and BS; Funding Acquisition, BS.


This study was funded by a grant from VolkswagenStiftung.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. Ambrosini, E., Pezzulo, G., & Costantini, M. (2015). The eye in hand: Predicting others’ behavior by integrating multiple sources of information. Journal of Neurophysiology, 113(7), 2271–2279.CrossRefPubMedPubMedCentralGoogle Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th edn.). Arlington: American Psychiatric Publishing.CrossRefGoogle Scholar
  3. Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting dynamic human action via statistical structure. Cognition, 106(3), 1382–1407.CrossRefPubMedGoogle Scholar
  4. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17.CrossRefPubMedGoogle Scholar
  5. Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in cognitive sciences, 10(6), 258–264.CrossRefPubMedGoogle Scholar
  6. Biro, S. (2013). The role of the efficiency of novel actions in infants’ goal anticipation. Journal of Experimental Child Psychology, 116(2), 415–427.CrossRefPubMedGoogle Scholar
  7. Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L., & Stone, W. L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological science, 14(2), 151–157.CrossRefPubMedGoogle Scholar
  8. Bölte, S., & Poustka, F. (2006). Fragebogen zur sozialen Kommunikation (FSK). Bern: Huber.Google Scholar
  9. Bölte, S., & Poustka, F. (2008). Skala zur Erfassung sozialer Reaktivität (SRS). Bern: Huber.Google Scholar
  10. Boseovski, J. J., & Lee, K. (2006). Children’s use of frequency information for trait categorization and behavioral prediction. Developmental Psychology, 42(3), 500–513.CrossRefPubMedGoogle Scholar
  11. Bosseler, A., & Massaro, D. W. (2003). Development and evaluation of a computer-animated tutor for vocabulary and language learning in children with autism. Journal of autism and developmental disorders, 33(6), 653–672.CrossRefPubMedGoogle Scholar
  12. Broekhof, E., Ketelaar, L., Stockmann, L., van Zijp, A., Bos, M. G., & Rieffe, C. (2015). The understanding of intentions, desires and beliefs in young children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(7), 2035–2045.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125(8), 1839–1849.CrossRefPubMedGoogle Scholar
  14. Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12(3), 314–325.CrossRefPubMedGoogle Scholar
  15. Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., Cossu, G., & Rizzolatti, G. (2007). Impairment of actions chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17825–17830.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Constantino, J. N., & Gruber, C. P. (2005). Social Responsiveness Scale (SRS). Los Angeles: Western Psychological Services.Google Scholar
  17. Cossu, G., Boria, S., Copioli, C., Bracceschi, R., Giuberti, V., Santelli, E., & Gallese, V. (2012). Motor representation of actions in children with autism. PloS One, 7(9), e44779.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cusack, J. P., Williams, J. H., & Neri, P. (2015). Action perception is intact in autism spectrum disorder. Journal of Neuroscience, 35(5), 1849–1857.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Falck-Ytter, T. (2010). Young children with autism spectrum disorder use predictive eye movements in action observation. Biology Letters, 6(3), 375–378.CrossRefPubMedGoogle Scholar
  20. Falck-Ytter, T., Gredebäck, G., & von Hofsten, C. (2006). Infants predict other people’s action goals. Nature Neuroscience, 9(7), 878–879.CrossRefPubMedGoogle Scholar
  21. Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769–771.CrossRefPubMedGoogle Scholar
  22. Fletcher-Watson, S., Leekam, S. R., Benson, V., Frank, M. C., & Findlay, J. M. (2009). Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia, 47(1), 248–257.CrossRefPubMedGoogle Scholar
  23. Freitag, C. M., Retz-Junginger, P., Retz, W., Seitz, C., Palmason, H., Meyer, J.,… von Gontard, A. (2007). Evaluation der deutschen version des autismus-spektrum-quotienten (AQ)—die kurzversion. Zeitschrift für Klinische Psychologie und Psychotherapie, 36(4), 280–289.CrossRefGoogle Scholar
  24. Frith, U. (1970a). Studies in pattern detection in normal and autistic children: I. Immediate recall of auditory sequences. Journal of Abnormal Psychology, 76(3), 413–420.Google Scholar
  25. Frith, U. (1970b). Studies in pattern detection in normal and autistic children: II. Reproduction and production of color sequences. Journal of Experimental Child Psychology, 10, 120–135.Google Scholar
  26. Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naïve theory of rational action. Trends in Cognitive Sciences, 7(7), 287–292.CrossRefPubMedGoogle Scholar
  27. Golan, O., Ashwin, E., Granader, Y., McClintock, S., Day, K., Leggett, V., & Baron-Cohen, S. (2010). Enhancing emotion recognition in children with autism spectrum conditions: An intervention using animated vehicles with real emotional faces. Journal of autism and developmental disorders, 40(3), 269–279.CrossRefPubMedGoogle Scholar
  28. Goldberg, M. C., Lasker, A. G., Zee, D. S., Garth, E., Tien, A., & Landa, R. J. (2002). Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia, 40(12), 2039–2049.CrossRefPubMedGoogle Scholar
  29. Guillon, Q., Hadjikhani, N., Baduel, S., & Rogé, B. (2014). Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neuroscience & Biobehavioral Reviews, 42, 279–297.CrossRefGoogle Scholar
  30. IBM SPSS Statistics (22) [computer software]. Chicago: SPSS Inc.Google Scholar
  31. Kaiser, M. D., & Pelphrey, K. A. (2012). Disrupted action perception in autism: behavioral evidence, neuroendophenotypes, and diagnostic utility. Developmental Cognitive Neuroscience, 2(1), 25–35.CrossRefPubMedGoogle Scholar
  32. Klin, A., & Jones, W. (2008). Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Developmental science, 11(1), 40–46.CrossRefPubMedGoogle Scholar
  33. Landry, R., & Bryson, S. E. (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry, 45(6), 1115–1122.Google Scholar
  34. Lehrl, S. (2005). Mehrfachwahl-Wortschatz-Intelligenztest MWT- B. Balingen: Spitta Verlag.Google Scholar
  35. Libero, L. E., Maximo, J. O., Deshpande, H. D., Klinger, L. G., Klinger, M. R., & Kana, R. K. (2014). The role of mirroring and mentalizing networks in mediating action intentions in autism. Molecular Autism, 5(50).Google Scholar
  36. Lord, C., Risi, S., Lambrecht, L., Cook, E. H. Jr., Leventhal, B. L., DiLavore, P. C.,… Rutter, M. et al. (2000). The autism diagnostic observation schedule—generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.CrossRefPubMedGoogle Scholar
  37. Love, J., Selker, R., Marsman, M., Jamil, T., Verhagen, A. J., Ly, A., et al. (2015). JASP (Version [Computer software].Google Scholar
  38. Marsh, L. E., & Hamilton, A. F. D. C. (2011). Dissociation of mirroring and mentalising systems in autism. NeuroImage, 56(3), 1511–1519.CrossRefPubMedGoogle Scholar
  39. Marsh, L. E., Pearson, A., Ropar, D., & Hamilton, A. (2013). Children with autism do not overimitate. Current Biology, 23(7), R266–R268.CrossRefPubMedGoogle Scholar
  40. Marsh, L. E., Pearson, A., Ropar, D., & Hamilton, A. D. C. (2015). Predictive gaze during observation of irrational actions in adults with autism spectrum conditions. Journal of Autism and Developmental Disorders, 45(1), 245–261.CrossRefPubMedGoogle Scholar
  41. Mayo, J., & Eigsti, I. M. (2012). Brief report: a comparison of statistical learning in school-aged children with high functioning autism and typically developing peers. Journal of Autism and Developmental Disorders, 42(11), 2476–2485.CrossRefPubMedGoogle Scholar
  42. Mostofsky, S. H., Goldberg, M. C., Landa, R. J., & Denckla, M. B. (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. Journal of the International Neuropsychological Society, 6(07), 752–759.CrossRefPubMedGoogle Scholar
  43. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.CrossRefPubMedGoogle Scholar
  44. Noris, B., Nadel, J., Barker, M., Hadjikhani, N., & Billard, A. (2012). Investigating gaze of children with ASD in naturalistic settings. PLoS One, 7(9), e44144.Google Scholar
  45. Paulus, M., Hunnius, S., van Wijngaarden, C., Vrins, S., van Rooij, I., & Bekkering, H. (2011a). The role of frequency information and teleological reasoning in infants’ and adults’ action prediction. Developmental Psychology, 47(4), 976–983.Google Scholar
  46. Paulus, M., Hunnius, S., Vissers, M., & Bekkering, H. (2011b). Imitation in infancy: Rational or motor resonance? Child Development, 82, 1047–1057.Google Scholar
  47. Petermann, F., & Petermann, U. (2007). Hamburg-Wechsler Intelligenztest für Kinder—IV (HAWIK-IV). Bern: Huber.Google Scholar
  48. Roser, M. E., Aslin, R. N., McKenzie, R., Zahra, D., & Fiser, J. (2015). Enhanced visual statistical learning in adults with autism. Neuropsychology, 29(2), 163.CrossRefPubMedGoogle Scholar
  49. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.CrossRefGoogle Scholar
  50. Ruffman, T. (2014). To belief or not belief: Children’s theory of mind. Developmental Review, 34(3), 265–293.CrossRefGoogle Scholar
  51. Ruffman, T., Taumoepeau, M., & Perkins, C. (2012). Statistical learning as a basis for social understanding in children. British Journal of Developmental Psychology, 30(1), 87–104.CrossRefPubMedGoogle Scholar
  52. Rutter, M., Bailey, A., & Lord, C. (2001). Social Communication Questionnaire (SCQ). Los Angeles: Western Psychological Services.Google Scholar
  53. Schmitt, L. M., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2014). Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in cerebellum and brainstem. Molecular autism, 5, 47.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schneider, D., Slaughter, V. P., Bayliss, A. P., & Dux, P. E. (2013). A temporally sustained implicit theory of mind deficit in autism spectrum disorders. Cognition, 129(2), 410–417.CrossRefPubMedGoogle Scholar
  55. Schuwerk, T., & Paulus, M. (2016). Preschoolers, adolescents, and adults visually anticipate an agent’s efficient action; but only after having observed it frequently. The Quarterly Journal of Experimental Psychology, 69(4), 800–816.CrossRefPubMedGoogle Scholar
  56. Schuwerk, T., Vuori, M., & Sodian, B. (2015). Implicit and explicit theory of mind reasoning in autism spectrum disorders: the impact of experience. Autism: the international journal of research and practice, 19(4), 459–468.CrossRefGoogle Scholar
  57. Schwartz, S., & Susser, E. (2011). The use of well controls: an unhealthy practice in psychiatric research. Psychological Medicine, 41(6), 1127–1131.CrossRefPubMedGoogle Scholar
  58. Scott-Van Zeeland, A. A., McNealy, K., Wang, A. T., Sigman, M., Bookheimer, S. Y., & Dapretto, M. (2010). No neural evidence of statistical learning during exposure to artificial languages in children with autism spectrum disorders. Biological Psychiatry, 68(4), 345–351.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sebanz, N., Knoblich, G., Stumpf, L., & Prinz, W. (2005). Far from action-blind: Representation of others’ actions in individuals with autism. Cognitive Neuropsychology, 22(3), 433–454.CrossRefPubMedGoogle Scholar
  60. Senju, A., Southgate, V., White, S., & Frith, U. (2009). Mindblind eyes: An absence of spontaneous theory of mind in asperger syndrome. Science, 325(5942), 883–885.CrossRefPubMedGoogle Scholar
  61. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2012). A 21 word solution. Dialogue: The Official Newsletter of the Society for Personality and Social Psychology, 26, 4–7.Google Scholar
  62. Sinha, P., Kjelgaard, M. M., Gandhi, T. K., Tsourides, K., Cardinaux, A. L., Pantazis, D.,… Held, R. M. et al. (2014). Autism as a disorder of prediction. Proceedings of the National Academy of Sciences of the United States of America, 111(42), 15220–15225.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Somogyi, E., Kiraly, I., Gergely, G., & Nadel, J. (2013). Understanding goals and intentions in low-functioning autism. Research in Developmental Disabilities, 34(11), 3822–3832.CrossRefPubMedGoogle Scholar
  64. Takarae, Y., Minshew, N. J., Luna, B., & Sweeney, J. A. (2004). Oculomotor abnormalities parallel cerebellar histopathology in autism. Journal of Neurology, Neurosurgery & Psychiatry, 75(9), 1359–1361.CrossRefGoogle Scholar
  65. Tobii Studio (3.1) [Computer software]. Stockholm: Tobii Technology.Google Scholar
  66. Tremoulet, P. D., & Feldman, J. (2000). Perception of animacy from the motion of a single object. Perception, 29(8), 943–951.CrossRefPubMedGoogle Scholar
  67. Van Overwalle, F. (2010). Infants’ teleological and belief inference: A recurrent connectionist approach to their minimal representational and computational requirements. NeuroImage, 52(3), 1095–1108.CrossRefPubMedGoogle Scholar
  68. Vivanti, G., McCormick, C., Young, G. S., Abucayan, F., Hatt, N., Nadig, A.,… Rogers, S. J (2011). Intact and impaired mechanisms of action understanding in autism. Developmental Psychology, 47(3), 841–856.CrossRefPubMedPubMedCentralGoogle Scholar
  69. von der Lühe, T., Manera, V., Barisic, I., Becchio, C., Vogeley, K., & Schilbach, L. (2016). Interpersonal predictive coding, not action perception is impaired in autism. Philosophical Transactions of the Royal Society B, 371, 20150373.CrossRefGoogle Scholar
  70. von Hofsten, C., Uhlig, H., Adell, M., & Kochukhova, O. (2009). How children with autism look at events. Research in Autism Spectrum Disorders, 3(2), 556–569.CrossRefGoogle Scholar
  71. Wang, S., Jiang, M., Duchesne, X. M., Laugeson, E. A., Kennedy, D. P., Adolphs, R., & Zhao, Q. (2015). Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron, 88(3), 604–616.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wechsler, D. (2003). Wechsler Intelligence Scale for Children-WISC-IV. Psychological Corporation.Google Scholar
  73. Weiß, R. H. (2006). Grundintelligenztest Skala 2—Revision (CFT 20-R). Göttingen: Hogrefe.Google Scholar
  74. World Health Organization (WHO). (1993). ICD-10: The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva.Google Scholar
  75. Yang, J., & Hofmann, J. (2015). Action observation and imitation in autism spectrum disorders: an ALE meta-analysis of fMRI studies. Brain Imaging and Behavior (Advance online publication).Google Scholar
  76. Zalla, T., Labruyere, N., & Georgieff, N. (2006). Goal-directed action representation in autism. Journal of Autism and Developmental Disorders, 36(4), 527–540.CrossRefPubMedGoogle Scholar
  77. Zeger, S. L., & Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 121–130.Google Scholar
  78. Zeger, S. L., Liang, K. Y., & Albert, P. S. (1988). Models for longitudinal data: a generalized estimating equation approach. Biometrics, 1049–1060.Google Scholar
  79. Zwickel, J., White, S. J., Coniston, D., Senju, A., & Frith, U. (2011). Exploring the building blocks of social cognition: spontaneous agency perception and visual perspective taking in autism. Social Cognitive and Affective Neuroscience, 6(5), 564–571.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PsychologyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany

Personalised recommendations