Journal of Autism and Developmental Disorders

, Volume 46, Issue 4, pp 1268–1281 | Cite as

Distinctive Role of Symbolic Number Sense in Mediating the Mathematical Abilities of Children with Autism

Original Paper

Abstract

Despite reports of mathematical talent in autism spectrum disorders (ASD), little is known about basic number processing abilities in affected children. We investigated number sense, the ability to rapidly assess quantity information, in 36 children with ASD and 61 typically developing controls. Numerical acuity was assessed using symbolic (Arabic numerals) as well as non-symbolic (dot array) formats. We found significant impairments in non-symbolic acuity in children with ASD, but symbolic acuity was intact. Symbolic acuity mediated the relationship between non-symbolic acuity and mathematical abilities only in children with ASD, indicating a distinctive role for symbolic number sense in the acquisition of mathematical proficiency in this group. Our findings suggest that symbolic systems may help children with ASD organize imprecise information.

Keywords

Number sense Autism spectrum disorders Math ability 

Notes

Acknowledgments

We thank Katherine Cheng, Amirah Khouzam, Sasha Spivak, and Amanda Baker for their assistance in data collection and organization. We also thank the participants and their families for their time and effort. This work was supported by a Career Development Award from the National Institutes of Health (MH101394) to Miriam Rosenberg-Lee, and National Institutes of Health (MH084164, HD047520) to Vinod Menon.

Author Contributions

AH participated in the statistical analysis and interpretation of the data, and drafted the manuscript; MRL conceived of the study, participated in its design, coordination and statistical analysis, and helped to draft the manuscript; MV conceived of the study, participated in its design, and helped to draft the manuscript. All authors read and approved the final manuscript.

Supplementary material

10803_2015_2666_MOESM1_ESM.docx (461 kb)
Supplementary material 1 (DOCX 461 kb)

References

  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. Arlington: American Psychiatric Publishing. doi:10.1176/appi.books.9780890425596.744053.CrossRefGoogle Scholar
  2. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.CrossRefPubMedGoogle Scholar
  3. Baron-Cohen, S. (2009). Autism: The empathizing–systemizing (ES) theory. Annals of the New York Academy of Sciences, 1156, 68–80. doi:10.1111/j.1749-6632.2009.04467.x.CrossRefPubMedGoogle Scholar
  4. Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1377–1383.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bennett, E., & Heaton, P. (2012). Is talent in autism spectrum disorders associated with a specific cognitive and behavioural phenotype? Journal of Autism and Developmental Disorders. doi:10.1007/s10803-012-1533-9.PubMedGoogle Scholar
  6. Bliese, P. (2013). Multilevel: Multilevel Functions. R package version 2.5. Retrieved September 2, 2014, from http://cran.r-project.org/package=multilevel.
  7. Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46(1), 3–18.CrossRefGoogle Scholar
  8. Cantlon, J. F., & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), 2912–2919.CrossRefGoogle Scholar
  9. Chiang, H.-M., & Lin, Y.-H. (2007). Mathematical ability of students with Asperger syndrome and high-functioning autism: A review of literature. Autism: The International Journal of Research and Practice, 11(6), 547–556. doi:10.1177/1362361307083259.CrossRefGoogle Scholar
  10. Christ, S. E., Holt, D. D., White, D. A., & Green, L. (2007). Inhibitory control in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 37(6), 1155–1165. doi:10.1007/s10803-006-0259-y.CrossRefPubMedGoogle Scholar
  11. Cowan, R., & Frith, C. (2009). Do calendrical savants use calculation to answer date questions? A functional magnetic resonance imaging study. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1417–1424.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davidson, R., & MacKinnon, J. G. (1981). Several tests for model specification in the presence of alternative hypotheses. Econometrica, 49(3), 781–793. doi:10.2307/1911522.CrossRefGoogle Scholar
  13. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.CrossRefGoogle Scholar
  14. Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.CrossRefPubMedGoogle Scholar
  15. Dehaene, S. (2011). The number sense: How the mind creates mathematics (2nd ed.). Oxford: Oxford University Press.Google Scholar
  16. Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.CrossRefPubMedGoogle Scholar
  17. Draaisma, D. (2009). Stereotypes of autism. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1475–1480.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Durand, M., Hulme, C., Larkin, R., & Snowling, M. (2005). The cognitive foundations of reading and arithmetic skills in 7- to 10-year-olds. Journal of Experimental Child Psychology, 91(2), 113–136.CrossRefPubMedGoogle Scholar
  19. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. doi:10.1016/j.jecp.2014.01.013.CrossRefPubMedGoogle Scholar
  20. Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child Development Perspectives, 7(2), 74–79. doi:10.1111/cdep.12019.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science 16(1), 136–148. doi:10.1111/desc.12013.CrossRefPubMedGoogle Scholar
  22. Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., et al. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), e67374. doi:10.1371/journal.pone.0067374.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Grigorenko, E. L., Klin, A., Pauls, D. L., Senft, R., Hooper, C., & Volkmar, F. (2002). A descriptive study of hyperlexia in a clinically referred sample of children with developmental delays. Journal of Autism and Developmental Disorders, 32(1), 3–12.CrossRefPubMedGoogle Scholar
  24. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465.CrossRefPubMedGoogle Scholar
  25. Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668.CrossRefPubMedGoogle Scholar
  26. Heavey, L., Pring, L., & Hermelin, B. (1999). A date to remember: The nature of memory in savant calendrical calculators. Psychological Medicine, 29(1), 145–160. doi:10.1017/S0033291798007776.CrossRefPubMedGoogle Scholar
  27. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29.CrossRefPubMedGoogle Scholar
  28. Hothorn, T., Zeileis, A., Farebrother, R. W., Cummins, C., Millo, G., & Mitchell, D. (2014). lmtest: Testing Linear Regression Models. Retrieved December 11, 2014, from http://cran.r-project.org/web/packages/lmtest/index.html.
  29. Howlin, P., Goode, S., Hutton, J., & Rutter, M. (2009). Savant skills in autism: Psychometric approaches and parental reports. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1359–1367. doi:10.1098/rstb.2008.0328.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Iuculano, T., Rosenberg-Lee, M., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., et al. (2014). Brain organization underlying superior mathematical abilities in children with autism. Biological Psychiatry, 75(3), 223–230.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jones, C. R. G., Happé, F., Golden, H., Marsden, A. J. S., Tregay, J., Simonoff, E., et al. (2009). Reading and arithmetic in adolescents with autism spectrum disorders: Peaks and dips in attainment. Neuropsychology, 23(6), 718–728.CrossRefPubMedGoogle Scholar
  32. Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95–103.CrossRefGoogle Scholar
  33. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300. doi:10.1111/j.1467-7687.2011.01080.x.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lonnemann, J., Linkersdörfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. Journal of Neurolinguistics, 24(5), 583–591.CrossRefGoogle Scholar
  35. Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.CrossRefPubMedGoogle Scholar
  36. Meaux, E., Taylor, M. J., Pang, E. W., Vara, A. S., & Batty, M. (2014). Neural substrates of numerosity estimation in autism. Human Brain Mapping,. doi:10.1002/hbm.22480.PubMedGoogle Scholar
  37. Mitchell, P., & Ropar, D. (2004). Visuo-spatial abilities in autism: A review. Infant and Child Development, 13(3), 185–198.CrossRefGoogle Scholar
  38. Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520.CrossRefPubMedGoogle Scholar
  39. Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490–502.CrossRefPubMedGoogle Scholar
  40. Muth, A., Hönekopp, J., & Falter, C. M. (2014). Visuo-spatial performance in autism: A meta-analysis. Journal of Autism and Developmental Disorders,. doi:10.1007/s10803-014-2188-5.PubMedGoogle Scholar
  41. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383.CrossRefGoogle Scholar
  42. Pickering, S., & Gathercole, S. E. (2001). Working memory test battery for children (WMTB-C). New York: Psychological Corporation.Google Scholar
  43. Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1), 50–57.CrossRefPubMedGoogle Scholar
  44. Qian, N., & Lipkin, R. M. (2011). A learning-style theory for understanding autistic behaviors. Frontiers in Human Neuroscience, 5, 77.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. J. (2000). Atypical interference of local detail on global processing in high-functioning autism and Asperger’s disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(6), 769–778.CrossRefGoogle Scholar
  46. Scripture, E. W. (1981). Arithmetical prodigies. The American Journal of Psychology, 4(1), 1–59.CrossRefGoogle Scholar
  47. Szűcs, D., Nobes, A., Devine, A., Gabriel, F. C., & Gebuis, T. (2013). Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology, 4, 444. doi:10.3389/fpsyg.2013.00444.PubMedPubMedCentralGoogle Scholar
  48. Titeca, D., Roeyers, H., Josephy, H., Ceulemans, A., & Desoete, A. (2014). Preschool predictors of mathematics in first grade children with autism spectrum disorder. Research in Developmental Disabilities, 35(11), 2714–2727. doi:10.1016/j.ridd.2014.07.012.CrossRefPubMedGoogle Scholar
  49. Treffert, D. A. (2009). The savant syndrome: An extraordinary condition. A synopsis: Past, present, future. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1351–1357.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Turi, M., Burr, D. C., Igliozzi, R., Aagten-Murphy, D., Muratori, F., & Pellicano, E. (2015). Children with autism spectrum disorder show reduced adaptation to number. Proceedings of the National Academy of Sciences of the United States of America, 112(25), 7868–7872. doi:10.1073/pnas.1504099112.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science,. doi:10.1111/desc.12143.PubMedGoogle Scholar
  52. Vanbinst, K., Ghesquiere, P., & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129–136.CrossRefGoogle Scholar
  53. Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873.CrossRefPubMedGoogle Scholar
  54. Wechscler, D. (1999). Wechsler abbreviated scale of intelligence. New York, NY: The Psychological Corporation: Harcourt Brace & Company.Google Scholar
  55. Wechsler, D. (2002). Wechsler individual achievement test II. San Antonio, TX: Psychological Corporation.Google Scholar
  56. Wei, X., Christiano, E. R. A., Yu, J. W., Wagner, M., & Spiker, D. (2015). Reading and math achievement profiles and longitudinal growth trajectories of children with an autism spectrum disorder. Autism: The International Journal of Research and Practice, 19(2), 200–210. doi:10.1177/1362361313516549.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  2. 2.School of EducationStanford UniversityStanfordUSA
  3. 3.Stanford Neuroscience InstituteStanford UniversityStanfordUSA
  4. 4.Department of Neurology and Neurological SciencesStanford UniversityStanfordUSA
  5. 5.Symbolic Systems ProgramStanford UniversityStanfordUSA
  6. 6.Human Centered Design and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations