Advertisement

Journal of Autism and Developmental Disorders

, Volume 45, Issue 5, pp 1437–1450 | Cite as

Comparing Diagnostic Outcomes of Autism Spectrum Disorder Using DSM-IV-TR and DSM-5 Criteria

  • Elizabeth B. Harstad
  • Jason Fogler
  • Georgios Sideridis
  • Sarah Weas
  • Carrie Mauras
  • William J. Barbaresi
Original Paper

Abstract

Controversy exists regarding the DSM-5 criteria for ASD. This study tested the psychometric properties of the DSM-5 model and determined how well it performed across different gender, IQ, and DSM-IV-TR sub-type, using clinically collected data on 227 subjects (median age = 3.95 years, majority had IQ > 70). DSM-5 was psychometrically superior to the DSM-IV-TR model (Comparative Fit Index of 0.970 vs 0.879, respectively). Measurement invariance revealed good model fit across gender and IQ. Younger children tended to meet fewer diagnostic criteria. Those with autistic disorder were more likely to meet social communication and repetitive behaviors criteria (p < .001) than those with PDD-NOS. DSM-5 is a robust model but will identify a different, albeit overlapping population of individuals compared to DSM-IV-TR.

Keywords

Autism spectrum disorder (ASD) DSM-5 Confirmatory factor analysis Measurement invariance 

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.CrossRefGoogle Scholar
  2. Akaike, H. (1980). Likelihood and the Bayes procedure. In J. M. Bernardo (Ed.), Bayesian Statistics (Vol. 31, pp. 143–166). Valencia: University Press.Google Scholar
  3. American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders-IV-Text Revision. Washington, DC: American Psychiatric Publishing.Google Scholar
  4. American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition. Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
  5. Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23(2), 185–188. doi: 10.1038/13810.CrossRefPubMedGoogle Scholar
  6. Barton, M. L., Robins, D. L., Jashar, D., Brennan, L., & Fein, D. (2013). Sensitivity and specificity of proposed DSM-5 criteria for autism spectrum disorder in toddlers. Journal of Autism and Developmental Disorders, 43(5), 1184–1195. doi: 10.1007/s10803-013-1817-8.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bayley, N. (2006). Manual for the Bayley Scales of Infant and Toddler Development (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  8. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.CrossRefPubMedGoogle Scholar
  9. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606.CrossRefGoogle Scholar
  10. Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley.CrossRefGoogle Scholar
  11. Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  12. Breivik, E., & Olsson, U. (2001). Adding variables to improve fit: the effect of model size on fit assessment in Lisrel. In R. Cudeck, S. du Toit, & D. Sorbom (Eds.), Structural equation modeling: Present and future (pp. 169–194). Lincolnwood, IL: Scientific Software International.Google Scholar
  13. Brockwell, P. J., & Davis, R. A. (1991). Time series: theory and methods (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  14. Charan, S. H. (2012). Childhood disintegrative disorder. Journal of Pediatric Neurosciences, 7(1), 55–57. doi: 10.4103/1817-1745.97627.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Elliott, C. (2007). Differential ability scales (2nd ed.). San Antonio: Pearson.Google Scholar
  16. Enders, C. K., & Tofighi, D. (2008). The impact of misspecifying class-specific residual variances in growth mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 15, 75–95.CrossRefGoogle Scholar
  17. Frazier, T. W., Youngstrom, E. A., Kubu, C. S., Sinclair, L., & Rezai, A. (2008). Exploratory and confirmatory factor analysis of the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 38(3), 474–480. doi: 10.1007/s10803-007-0415-z.CrossRefPubMedGoogle Scholar
  18. Frazier, T. W., Youngstrom, E. A., Speer, L., Law, P., Constantino, J., Findling, R. L., et al. (2012). Validation of proposed DSM-5 criteria for autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 51(1), 28–40 e3. doi: 10.1016/j.jaac.2011.09.021.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Gibbs, V., Aldridge, F., Chandler, F., Witzlsperger, E., & Smith, K. (2012). Brief report: an exploratory study comparing diagnostic outcomes for autism spectrum disorders under DSM-IV-TR with the proposed DSM-5 revision. Journal of Autism and Developmental Disorders, 42(8), 1750–1756. doi: 10.1007/s10803-012-1560-6.CrossRefPubMedGoogle Scholar
  20. Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV. Multivariate Behavioral Research, 48, 639–662.CrossRefGoogle Scholar
  21. Gotham, K., Risi, S., Pickles, A., & Lord, C. (2007). The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity. Journal of Autism and Developmental Disorders, 37(4), 613–627. doi: 10.1007/s10803-006-0280-1.CrossRefPubMedGoogle Scholar
  22. Guthrie, W., Swineford, L. B., Wetherby, A. M., & Lord, C. (2013). Comparison of DSM-IV and DSM-5 factor structure models for toddlers with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 52(8), 797–805 e2. doi: 10.1016/j.jaac.2013.05.004.CrossRefPubMedGoogle Scholar
  23. Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston: Kluwer.CrossRefGoogle Scholar
  24. Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9(10), 1218–1220. doi: 10.1038/nn1770.CrossRefPubMedGoogle Scholar
  25. Hu, L. T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling concepts, issues, and applications (pp. 76–99). London: Sage.Google Scholar
  26. Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.CrossRefGoogle Scholar
  27. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRefGoogle Scholar
  28. Huerta, M., Bishop, S. L., Duncan, A., Hus, V., & Lord, C. (2012). Application of DSM-5 criteria for autism spectrum disorder to three samples of children with DSM-IV diagnoses of pervasive developmental disorders. The American Journal of Psychiatry, 169(10), 1056–1064. doi: 10.1176/appi.ajp.2012.12020276.CrossRefPubMedGoogle Scholar
  29. Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307.CrossRefGoogle Scholar
  30. Insel, T. R. (2014). The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. The American Journal of Psychiatry, 171(4), 395–397. doi: 10.1176/appi.ajp.2014.14020138.CrossRefPubMedGoogle Scholar
  31. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, P. S., Quinn, K., et al. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751. doi: 10.1176/appi.ajp.2010.09091379.CrossRefPubMedGoogle Scholar
  32. Joreskog, K. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York: Seminar Press.Google Scholar
  33. Kenny, D. A. (2012). Measuring model fit. Retrieved October 22, 2012 from http://www.davidakenny.net/cm/fit.htm.
  34. Kent, R. G., Carrington, S. J., LeCouteur, A., Gould, J., Wing, L., Maljaars, J., et al. (2013). Diagnosing Autism Spectrum Disorder: who will get a DSM-5 diagnosis? Journal of Child Psychology and Psychiatry, 54(11), 1242–1250. doi: 10.1111/jcpp.12085.CrossRefPubMedCentralPubMedGoogle Scholar
  35. Kim, Y. S., Fombonne, E., Koh, Y. J., Kim, S. J., Cheon, K. A., & Leventhal, B. L. (2014). A comparison of DSM-IV pervasive developmental disorder and DSM-5 autism spectrum disorder prevalence in an epidemiologic sample. Journal of the American Academy of Child and Adolescent Psychiatry, 53(5), 500–508. doi: 10.1016/j.jaac.2013.12.021.CrossRefPubMedGoogle Scholar
  36. Kulage, K. M., Smaldone, A. M., & Cohn, E. G. (2014). How Will DSM-5 affect autism diagnosis? A systematic literature review and meta-analysis. Journal of Autism and Developmental Disorders, 44(8), 1918–1932. doi: 10.1007/s10803-014-2065-2.CrossRefPubMedGoogle Scholar
  37. Lecavalier, L., Gadow, K. D., DeVincent, C. J., Houts, C., & Edwards, M. C. (2009). Deconstructing the PDD clinical phenotype: Internal validity of the DSM-IV. Journal of Child Psychology and Psychiatry, 50(10), 1246–1254. doi: 10.1111/j.1469-7610.2009.02104.x.CrossRefPubMedGoogle Scholar
  38. Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural equation analysis. Mahwah, NJ: Lawrence.Google Scholar
  39. Lord, C., & Jones, R. M. (2012). Annual research review: Re-thinking the classification of autism spectrum disorders. Journal of Child Psychology and Psychiatry, 53(5), 490–509. doi: 10.1111/j.1469-7610.2012.02547.x.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., et al. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69(3), 306–313. doi: 10.1001/archgenpsychiatry.2011.148.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavare, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.CrossRefPubMedGoogle Scholar
  42. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.CrossRefGoogle Scholar
  43. Maglione, M. A., Gans, D., Das, L., Timbie, J., & Kasari, C. (2012). Nonmedical interventions for children with ASD: Recommended guidelines and further research needs. Pediatrics, 130(Suppl 2), S169–S178. doi: 10.1542/peds.2012-0900O.CrossRefPubMedGoogle Scholar
  44. Mahoney, W. J., Szatmari, P., Maclean, J. E., Bryson, S. E., Bartolucci, G., Walter, S. D., et al. (1998). Reliability and accuracy of differentiating pervasive developmental disorder subtypes. Journal of the American Academy of Child and Adolescent Psychiatry, 37(3), 278–285. doi: 10.1097/00004583-199803000-00012.CrossRefPubMedGoogle Scholar
  45. Mandy, W. P., Charman, T., & Skuse, D. H. (2012). Testing the construct validity of proposed criteria for DSM-5 autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 51(1), 41–50. doi: 10.1016/j.jaac.2011.10.013.CrossRefPubMedGoogle Scholar
  46. Marsh, H. W., Hau, K.-T., & Grayson, D. (2005). Goodness of fit in structural equation models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics. A Festschrift for Roderick P. McDonald. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  47. Matson, J. L., Hattier, M. A., & Williams, L. W. (2012a). How does relaxing the algorithm for autism affect DSM-V prevalence rates? Journal of Autism and Developmental Disorders, 42(8), 1549–1556. doi: 10.1007/s10803-012-1582-0.CrossRefPubMedGoogle Scholar
  48. Matson, J. L., Kozlowski, A. M., Hattier, M. A., Horovitz, H., & Sipes, M. (2012b). DSM-IV vs DSM-5 diagnostic criteria for toddlers with autism. Developmental Neurorehabilitation, 15(3), 185–190. doi: 10.3109/17518423.2012.672341.CrossRefPubMedGoogle Scholar
  49. McPartland, J. C., Reichow, B., & Volkmar, F. R. (2012). Sensitivity and specificity of proposed DSM-5 diagnostic criteria for autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 51(4), 368–383. doi: 10.1016/j.jaac.2012.01.007.CrossRefPubMedCentralPubMedGoogle Scholar
  50. McQuarrie, A. D. R., & Tsai, C.-L. (1998). Regression and time series model selection. Singapore: World Scientific.CrossRefGoogle Scholar
  51. Muthen, L. K., & Muthen, B. O. (2007). Mplus user’s guide 4. Los Angeles, CA: Muthen & Muthen.Google Scholar
  52. Norris, M., Lecavalier, L., & Edwards, M. C. (2012). The structure of autism symptoms as measured by the autism diagnostic observation schedule. Journal of Autism and Developmental Disorders, 42(6), 1075–1086. doi: 10.1007/s10803-011-1348-0.CrossRefPubMedGoogle Scholar
  53. Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163.CrossRefGoogle Scholar
  54. Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests. Chicago, IL: The University of Chicago Press.Google Scholar
  55. Raykov, T. (2005). Studying group and time invariance in maximal reliability for multiple-component measuring instruments via covariance structure modelling. The British Journal of Mathematical and Statistical Psychology, 58(Pt 2), 301–317. doi: 10.1348/000711005X38591.CrossRefPubMedGoogle Scholar
  56. Raykov, T., & Marcoulides, G. (2000). A first course in structural equation modeling. Mahwah, NJ: Lawrence.Google Scholar
  57. Reise, S. (1990). A comparison of item and person fit methods of assessing model fit in IRT. Applied Psychological Measurement, 42, 127–137.CrossRefGoogle Scholar
  58. Rieske, R. D., Matson, J. L., Beighley, J. S., Cervantes, P. E., Goldin, R. L., & Jang, J. (2013). Comorbid psychopathology rates in children diagnosed with autism spectrum disorders according to the DSM-IV-TR and the proposed DSM-5. Developmental Neurorehabilitation: Advance online publication. doi: 10.3109/17518423.2013.790519.Google Scholar
  59. Rigdon, E. E. (1996). CFI versus RMSEA: A comparison of two fit indexes for structural equation modeling. Structural Equation Modeling, 3(4), 369–379.CrossRefGoogle Scholar
  60. Ronald, A., Happe, F., Bolton, P., Butcher, M., Price, T. S., & Plomin, R. (2006). Genetic heterogeneity between the three components of the autism spectrum: A twin study. Journal of the American Academy of Child and Adolescent Psychiatry, 45(6), 691–699. doi: 10.1097/01.chi.0000215325.13058.9d.CrossRefPubMedGoogle Scholar
  61. Schwarz, G. E. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  62. Sideridis, G. D., Simos, P., Papanicolaou, A., & Fletcher, J. (2014). Using structural equation modeling to assess functional connectivity in the brain: Power and sample size considerations. Educational and Psychological Measurement, 74, 733–758.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Smith, E. V, Jr. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. Journal of Applied Measurement, 3, 205–231.PubMedGoogle Scholar
  64. Smith, R. M., Schumacker, R. E., & Bush, M. J. (1998). Using item mean squares to evaluate fit to the Rasch model. Journal of Outcome Measurement, 2, 66–78.PubMedGoogle Scholar
  65. Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173–180.CrossRefGoogle Scholar
  66. Steiger, J. H. (2000). Point Estimation, hypothesis testing, and interval estimation using the RMSEA: Some comments and a reply to Hayduk and Glaser. Structural Equation Modeling, 7(2), 149–162.CrossRefGoogle Scholar
  67. Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42, 893–898.CrossRefGoogle Scholar
  68. Stuive, I., Kiers, H. A. L., Timmerman, M. E., & ten Berge, J. M. F. (2008). The empirical verification of an assignment of items to subtests: The oblique multiple group method versus the confirmatory common factor method. Educational and Psychological Measurement, 68(6), 923–939.CrossRefGoogle Scholar
  69. Taheri, A., & Perry, A. (2012). Exploring the proposed DSM-5 criteria in a clinical sample. Journal of Autism and Developmental Disorders, 42(9), 1810–1817. doi: 10.1007/s10803-012-1599-4.CrossRefPubMedGoogle Scholar
  70. Tofghi, D., & Enders, C. K. (2007). Identifying the correct number of classes in mixture models. In G. R. Hancock & K. M. Samulelsen (Eds.), Advances in latent variable mixture models (pp. 317–341). Greenwich, CT: Information Age.Google Scholar
  71. Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrica, 38, 1–10.CrossRefGoogle Scholar
  72. Widaman, K. F., & Thompson, J. S. (2003). On specifying the null model for incremental fit indices in structural equation modeling. Psychological Methods, 8(1), 16–37.CrossRefPubMedGoogle Scholar
  73. Worley, J. A., & Matson, J. L. (2012). Comparing symptoms of autism spectrum disorders using the current DSM-IV-TR diagnostic criteria and the proposed DSM-V diagnostic criteria. Research in Autism Spectrum Disorders, 6, 965–970.CrossRefGoogle Scholar
  74. Young, R. L., & Rodi, M. L. (2013). Redefining Autism Spectrum Disorder Using DSM-5: The Implications of the Proposed DSM-5 Criteria for Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 44(4), 758–765. doi: 10.1007/s10803-013-1927-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Elizabeth B. Harstad
    • 1
    • 2
  • Jason Fogler
    • 1
    • 2
  • Georgios Sideridis
    • 1
    • 2
  • Sarah Weas
    • 1
  • Carrie Mauras
    • 1
    • 2
  • William J. Barbaresi
    • 1
    • 2
  1. 1.Division of Developmental MedicineBoston Children’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations