Journal of Autism and Developmental Disorders

, Volume 46, Issue 5, pp 1582–1589

Does WISC-IV Underestimate the Intelligence of Autistic Children?

  • Anne-Marie Nader
  • Valérie Courchesne
  • Michelle Dawson
  • Isabelle Soulières
Perception In Autism

Abstract

Wechsler Intelligence Scale for Children (WISC) is widely used to estimate autistic intelligence (Joseph in The neuropsychology of autism. Oxford University Press, Oxford, 2011; Goldstein et al. in Assessment of autism spectrum disorders. Guilford Press, New York, 2008; Mottron in J Autism Dev Disord 34(1):19–27, 2004). However, previous studies suggest that while WISC-III and Raven’s Progressive Matrices (RPM) provide similar estimates of non-autistic intelligence, autistic children perform significantly better on RPM (Dawson et al. in Psychol Sci 18(8):657–662, doi:10.1111/j.1467-9280.2007.01954.x, 2007). The latest WISC version introduces substantial changes in subtests and index scores; thus, we asked whether WISC-IV still underestimates autistic intelligence. Twenty-five autistic and 22 typical children completed WISC-IV and RPM. Autistic children’s RPM scores were significantly higher than their WISC-IV FSIQ, but there was no significant difference in typical children. Further, autistic children showed a distinctively uneven WISC-IV index profile, with a “peak” in the new Perceptual Reasoning Index. In spite of major changes, WISC-IV FSIQ continues to underestimate autistic intelligence.

Keywords

Autism Children Intelligence Wechsler scales Raven’s progressive matrices Abstract reasoning 

References

  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders—Text revision. Washington, DC: American Psychiatric Association.Google Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (Vol. 5). Washington, DC: American Psychiatric Association.Google Scholar
  3. Au-Yeung, S. K., Kaakinen, J. K., & Benson, V. (2013). Cognitive perspective-taking during scene perception in autism spectrum disorder: Evidence from eye movements. Autism Research,. doi:10.1002/aur.1352.PubMedGoogle Scholar
  4. Baird, G., Simonoff, E., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., et al. (2006). Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). The Lancet, 368(9531), 210–215.CrossRefGoogle Scholar
  5. Barbeau, E. B., Soulières, I., Dawson, M., Zeffiro, T. A., & Mottron, L. (2013). The level and nature of autistic intelligence III: Inspection time. Journal of Abnormal Psychology, 122(1), 295–301.CrossRefPubMedGoogle Scholar
  6. Bölte, S., Dziobek, I., & Poustka, F. (2009). Brief report: The level and nature of autistic intelligence revisited. Journal of Autism and Developmental Disorders, 39(4), 678–682.CrossRefPubMedGoogle Scholar
  7. Boso, M., Forth, J., Bordin, A., Faggioli, R., D’Angelo, E., Politi, P., et al. (2013). Transposition ability in a young musician with autism and blindness: Testing cognitive models of autism. Psychomusicology: Music, Mind, and Brain, 23(2), 109–116.CrossRefGoogle Scholar
  8. Caron, M. J., Mottron, L., Berthiaume, C., & Dawson, M. (2006). Cognitive mechanisms, specificity and neural underpinnings of visuospatial peaks in autism. Brain, 129(Pt 7), 1789–1802. doi:10.1093/brain/awl072.CrossRefPubMedGoogle Scholar
  9. Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97(3), 404–431.CrossRefPubMedGoogle Scholar
  10. Charman, T., Pickles, A., Simonoff, E., Chandler, S., Loucas, T., & Baird, G. (2011). IQ in children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychological Medecine: A Journal of Research in Psychiatry and the Allied Sciences, 41(3), 619–627.CrossRefGoogle Scholar
  11. Courchesne, V., Simard-Meilleur, A. A., Soulières, I. (2012) Intelligence testing in autistic children regarded as very low-functioning: The good surprise. In International Meeting for Autism Research, Toronto, Canada.Google Scholar
  12. Dawson, M., Soulieres, I., Gernsbacher, M. A., & Mottron, L. (2007). The level and nature of autistic intelligence. Psychological Science, 18(8), 657–662. doi:10.1111/j.1467-9280.2007.01954.x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Flynn, J. R. (2000). IQ gains, WISC subtests, and fluid g: g theory and the relevance of Spearman’s hypothesis to race (followed by Discussion). In G. R. Bock, J. A. Goode, & K. Webb (Eds.), The nature of intelligence (Novartis Foundation Symposium 233, pp. 202–227). New York: Wiley.Google Scholar
  14. Fox, M. C., & Charness, N. (2010). How to gain eleven IQ points in ten minutes: Thinking aloud improves Raven’s matrices performance in older adults. Aging, Neuropsychology, and Cognition: A Journal on Normal and Dysfunctional Development, 17(2), 191–204.CrossRefGoogle Scholar
  15. Goldstein, S., Naglieri, J. A., & Ozonoff, S. (2008). Assessment of autism spectrum disorders. New York: Guilford Press.Google Scholar
  16. Happe, F. G. (1994). Wechsler IQ profile and theory of mind in autism: a research note. Journal of Child Psychology and Psychiatry, 35(8), 1461–1471.CrossRefPubMedGoogle Scholar
  17. Happe, F. (1999). Autism: cognitive deficit or cognitive style? Trends Cogn Sci, 3(6), 216–222.CrossRefPubMedGoogle Scholar
  18. Hayashi, M., Kato, M., Igarashi, K., & Kashima, H. (2008). Superior fluid intelligence in children with Asperger’s disorder. Brain and Cognition, 66(3), 306–310. doi:10.1016/j.bandc.2007.09.008.CrossRefPubMedGoogle Scholar
  19. Heaton, P. (2009). Assessing musical skills in autistic children who are not savants. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1443–1447. doi:10.1098/rstb.2008.0327.CrossRefGoogle Scholar
  20. Heaton, P., Davis, R. E., & Happé, F. G. (2008). Research note: Exceptional absolute pitch perception for spoken words in an able adult with autism. Neuropsychologia, 46(7), 2095–2098.Google Scholar
  21. Hobson, P. (2002). The cradle of thought: Exploring the origins of thinking. London: Macmillan.Google Scholar
  22. Jones, C. R., Happe, F., Golden, H., Marsden, A. J., Tregay, J., Simonoff, E., et al. (2009). Reading and arithmetic in adolescents with autism spectrum disorders: Peaks and dips in attainment. Neuropsychology, 23(6), 718–728. doi:10.1037/a0016360.CrossRefPubMedGoogle Scholar
  23. Joseph, R. M. (2011). The significiance of IQ and differential cognitive abilities. In D. A. Fein (Ed.), The neuropsychology of autism. Oxford: Oxford University Press.Google Scholar
  24. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127(Pt 8), 1811–1821. doi:10.1093/brain/awh199awh199.CrossRefPubMedGoogle Scholar
  25. Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K., & Varma, S. (2012). Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neuroscience and Biobehavioral Reviews, 36(4), 1292–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.CrossRefGoogle Scholar
  27. Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage, 24(3), 810–821. doi:10.1016/j.neuroimage.2004.09.028.CrossRefPubMedGoogle Scholar
  28. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism diagnostic observation schedule. Los Angeles: Western Psychological Services.Google Scholar
  29. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnosis Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.CrossRefPubMedGoogle Scholar
  30. Mackintosh, N. (2011). IQ and human intelligence. Oxford: Oxford University Press.Google Scholar
  31. Mayes, S., & Calhoun, S. (2008). WISC-IV and WIAT-II profiles in children with high-functioning autism. Journal of Autism and Developmental Disorders, 38(3), 428–439. doi:10.1007/s10803-007-0410-4.CrossRefPubMedGoogle Scholar
  32. Miller, L. (1989). Musical savants: Exceptional skill in the mentally retarded. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  33. Mottron, L. (2004). Matching strategies in cognitive research with individuals with high-functioning autism: Current practices, instrument biases, and recommendations. Journal of Autism and Developmental Disorders, 34(1), 19–27.CrossRefPubMedGoogle Scholar
  34. Mottron, L., Bouvet, L., Bonnel, A., Samson, F., Burack, J. A., Dawson, M., et al. (2013). Veridical mapping in the development of exceptional autistic abilities. Neuroscience and Biobehavioral Reviews, 37(2), 209–228. doi:10.1016/j.neubiorev.2012.11.016.CrossRefPubMedGoogle Scholar
  35. Mottron, L., Dawson, M., & Soulières, I. (2009). Enhanced perception in savant syndrome: Patterns, structure and creativity. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1385–1391. doi:10.1098/rstb.2008.0333.CrossRefGoogle Scholar
  36. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43. doi:10.1007/s10803-005-0040-7.CrossRefPubMedGoogle Scholar
  37. Nader, A. M., Jelenic, P., & Soulières, I. (2012). Cognitive profile in autistic versus Asperger children: A comparison of WISC-III and WISC-IV profiles. International Meeting for Autism Research. Google Scholar
  38. Neisser, U. (Ed.) (1998). Introduction: Rising test scores and what they mean. In The rising curve: Long-term gains in IQ and related measures (pp. 3–22). Washington, DC: American Psychological Association.Google Scholar
  39. Oliveras-Rentas, R., Kenworthy, L., Roberson, R, I. I. I., Martin, A., & Wallace, G. (2012). WISC-IV profile in high-functioning autism spectrum disorders: Impaired processing speed is associated with increased autism communication symptoms and decreased adaptive communication abilities. Journal of Autism and Developmental Disorders, 42(5), 655–664. doi:10.1007/s10803-011-1289-7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pring, L. (2008). Memory characteristics in individuals with savant skills. In J. Boucher & D. Bowler (Eds.), Memory in autism: Theory and practice (pp. 210–230). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Raven, J., Raven, J. C., & Court, J. H. (1998). Raven manual: Section 3. Standard progressive matrices. Oxford: Oxford Psychologists Press.Google Scholar
  42. Samson, F., Mottron, L., Soulières, I., & Zeffiro, T. A. (2012). Enhanced visual functioning in autism: An ALE meta-analysis. Human Brain Mapping, 33(7), 1553–1581.CrossRefPubMedGoogle Scholar
  43. Shah, A., & Frith, U. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry, 34(8), 1351–1364.CrossRefPubMedGoogle Scholar
  44. Sinclair, J. (1999). Why I dislike “person first” language. Retrieved from http://web.archive.org/web/20090210190652/http://web.syr.edu/jisincla/person_first.htm.
  45. Snow, R. E., Kyllonen, P. C., & Marshalek, B. (1984). The topography of ability and learning correlations. Advances in the Psychology of Human Intelligence, 2, 47–103.Google Scholar
  46. Soulières, I., Dawson, M., Gernsbacher, M. A., & Mottron, L. (2011). The level and nature of autistic intelligence II: What about Asperger syndrome? PLoS ONE, 6(9), e25372. doi:10.1371/journal.pone.0025372.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Soulieres, I., Dawson, M., Samson, F., Barbeau, E. B., Sahyoun, C. P., Strangman, G. E., et al. (2009). Enhanced visual processing contributes to matrix reasoning in autism. Human Brain Mapping,. doi:10.1002/hbm.20831.PubMedPubMedCentralGoogle Scholar
  48. Stevenson, J. L., & Gernsbacher, M. A. (2013). Abstract spatial reasoning as an autistic strength. PLoS ONE, 8(3), e59329.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Unsworth, N., & Engle, R. W. (2005). Working memory capacity and fluid abilities: Examining the correlation between Operation Span and Raven. Intelligence, 33(1), 67–81.CrossRefGoogle Scholar
  50. Vivanti, G., Barbaro, J., Hudry, K., Dissanayake, C., & Prior, M. (2013). Intellectual development in autism spectrum disorders: New insights from longitudinal studies. Frontiers in Human Neuroscience, 7, 354. doi:10.3389/fnhum.2013.00354.
  51. Wechsler, D. (1991). Wechsler intelligence scale for children, 3rd edition (WISC-III). San Antonio, TX: Psychological Corporation.Google Scholar
  52. Wechsler, D. (2003). Wechsler intelligence scale for children, 4th edition (WISC-IV). San Antonio, TX: Psychological Corporation.Google Scholar
  53. Williams, E., Thomas, K., Sidebotham, H., & Emond, A. (2008). Prevalence and characteristics of autistic spectrum disorders in the ALSPAC cohort. Developmental Medecine and Child Neurology, 50(9), 672–677. doi:10.1111/j.1469-8749.2008.03042.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anne-Marie Nader
    • 1
    • 2
  • Valérie Courchesne
    • 1
    • 2
    • 3
  • Michelle Dawson
    • 1
  • Isabelle Soulières
    • 1
    • 2
  1. 1.Rivière-des-prairies HospitalCentre d’Excellence en Troubles Envahissants du Développement de l’Université de Montréal (CETEDUM)MontrealCanada
  2. 2.Psychology DepartmentUniversity of Quebec at MontrealMontrealCanada
  3. 3.Psychology DepartmentUniversity of MontrealMontrealCanada

Personalised recommendations