Advertisement

Journal of Autism and Developmental Disorders

, Volume 44, Issue 12, pp 3129–3139 | Cite as

Visual Feedback and Target Size Effects on Reach-to-Grasp Tasks in Children with Autism

  • Hsiu-Ching Yang
  • I-Chen Lee
  • I-Ching Lee
Original Paper

Abstract

This study explores the effects of visual condition and target size during four reach-to-grasp tasks between autistic children and healthy controls. Twenty children with autism and 20 healthy controls participated in the study. Qualisys motion capture system and kinematic measures were used to record movement. Autistic group showed significantly longer movement time, larger normalized jerk score, more movement unit than controls, especially in non-visual feedback and small target blocks. Autistic group also showed significantly larger maximal grip aperture and normalized maximal grip aperture in visual feedback condition than controls. Autistic children demonstrate motor coordination problems and also depend on more visual cuing in high accuracy tasks. Autistic children develop other compensatory skills while performing tasks.

Keywords

Autism Kinematics Reach to grasp Visual feedback Target size 

References

  1. Alberts, J. L., Saling, M., Adler, C. H., & Stelmach, G. E. (2000). Disruptions in the reach-to-grasp actions of Parkinson’s patients. Experimental Brain Research, 134(3), 353–362.PubMedCrossRefGoogle Scholar
  2. Baranek, G. T., David, F. J., Poe, M. D., Stone, W. L., & Watson, L. R. (2006). Sensory experiences questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Child Psychology and Psychiatry, 47(6), 591–601. doi: 10.1111/j.1469-7610.2005.01546.x.PubMedCrossRefGoogle Scholar
  3. Baranek, G. T., Parham, L. D., & Bodfish, J. W. (2005). Sensory and motor features in autism: assessment and intervention. In F. R. Volkmar, R. Paul, A. Klin, & D. Cohen (Eds.), Handbook of autism and pervasive developmental disorders (pp. 831–857). Hoboken, NJ: John Wiley.Google Scholar
  4. Chang, J. J., Wu, T. I., Wu, W. L., & Su, F. C. (2005). Kinematical measure for spastic reaching in children with cerebral palsy. Clinical Biomechanics, 20(4), 381–388.PubMedCrossRefGoogle Scholar
  5. Day, B. L., Thompson, P. D., Harding, A. E., & Marsden, C. D. (1998). Influence of vision on upper limb reaching movements in patients with cerebellar ataxia: Comparative study. Brain, 121, 357–372.PubMedCrossRefGoogle Scholar
  6. Desmurget, M., Grea, H., Grethe, J. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. (2001). Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. [Clinical Trial Research Support, U.S. Gov’t, P.H.S.]. Journal of Neuroscience, 21(8), 2919–2928.PubMedGoogle Scholar
  7. Dowd, A. M., McGinley, J. L., Taffe, J. R., & Rinehart, N. J. (2012). Do planning and visual integration difficulties underpin motor dysfunction in autism? A kinematic study of young children with autism. [Research Support, Non-U.S. Gov’t]. Journal of Autism & Developmental Disorders, 42(8), 1539–1548. doi: 10.1007/s10803-011-1385-8.CrossRefGoogle Scholar
  8. Eigsti, I. M., & Shapiro, T. (2003). A systems neuroscience approach to autism: Biological, cognitive, and clinical perspectives. [Review]. Mental Retardation & Developmental Disabilities Research Reviews, 9(3), 205–215.CrossRefGoogle Scholar
  9. Fasoli, S. E., Trombly, C. A., Tickle-Degnen, L., & Verfaellie, M. H. (2002). Effect of instructions on functional reach in persons with and without cerebrovascular accident. American Journal of Occupational Therapy, 56(4), 380–390.PubMedCrossRefGoogle Scholar
  10. Forti, S., Valli, A., Perego, P., Nobile, M., Crippa, A., & Massimo, M. (2011). Motor planning and control in autism. A kinematic analysis of preschool children. Research in Autism Spectrum Disorders, 5, 834–842.CrossRefGoogle Scholar
  11. Fuentes, C. T., Mostofsky, S. H., & Bastian, A. J. (2011). No proprioceptive deficits in autism despite movement-related sensory and execution impairments. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Autism & Developmental Disorders, 41(10), 1352–1361. doi: 10.1007/s10803-010-1161-1.CrossRefGoogle Scholar
  12. Ghaziuddin, M., & Butler, E. (1998). Clumsiness in autism and Asperger syndrome: A further report. Journal of Intellectual Disability Research, 42, 43–48.PubMedCrossRefGoogle Scholar
  13. Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. [Research Support, Non-U.S. Gov’t]. Motor Control, 10(3), 244–264.PubMedGoogle Scholar
  14. Glazebrook, C., Gonzalez, D., Hansen, S., & Elliott, D. (2009). The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. [Comparative Study Research Support, Non-U.S. Gov’t]. Autism, 13(4), 411–433. doi: 10.1177/1362361309105659.PubMedCrossRefGoogle Scholar
  15. Green, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., et al. (2009). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine and Child Neurology, 51(4), 311–316. doi: 10.1111/j.1469-8749.2008.03242.x.PubMedCrossRefGoogle Scholar
  16. Huebner, R. A., & Lane, S. J. (2001). Neuropsychological findings, etiology and implications for autism. In R. A. Huebner (Ed.), Autism: A sensorimotor approach to management (pp. 61–99). Austin: ProEd.Google Scholar
  17. Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: A kinematic analysis of human prehension. Experimental Brain Research, 86(1), 199–208.PubMedCrossRefGoogle Scholar
  18. Karl, J. M., Sacrey, L. A., Doan, J. B., & Whishaw, I. Q. (2012). Hand shaping using hapsis resembles visually guided hand shaping. [Research Support, Non-U.S. Gov’t]. Experimental Brain Research, 219(1), 59–74. doi: 10.1007/s00221-012-3067-y.PubMedCrossRefGoogle Scholar
  19. Kern, J. K., Trivedi, M. H., Garver, C. R., Grannemann, B. D., Andrews, A. A., Savla, J. S., et al. (2006). The pattern of sensory processing abnormalities in autism. [Research Support, Non-U.S. Gov’t]. Autism, 10(5), 480–494. doi: 10.1177/1362361306066564.PubMedCrossRefGoogle Scholar
  20. Kientz, M. A., & Dunn, W. (1997). A comparison of the performance of children with and without autism on the sensory profile. [Research Support, U.S. Gov’t, P.H.S.]. The American Journal of Occupational Therapy, 51(7), 530–537.PubMedCrossRefGoogle Scholar
  21. Kuhtz-Buschbeck, J. P., Stolze, H., Boczek-Funcke, A., Johnk, K., Heinrichs, H., & Illert, M. (1998a). Kinematic analysis of prehension movements in children. Behavioural Brain Research, 93(1–2), 131–141.PubMedCrossRefGoogle Scholar
  22. Kuhtz-Buschbeck, J. P., Stolze, H., Johnk, K., Boczek-Funcke, A., & Illert, M. (1998b). Development of prehension movements in children: A kinematic study. Experimental Brain Research, 122(4), 424–432.PubMedCrossRefGoogle Scholar
  23. Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. [Research Support, Non-U.S. Gov’t]. Journal of Autism & Developmental Disorders, 37(5), 894–910. doi: 10.1007/s10803-006-0218-7.CrossRefGoogle Scholar
  24. Liu, T. (2013). Sensory processing and motor skill performance in elementary school children with autism spectrum disorder. Perceptual & Motor Skills, 116(1), 197–209.CrossRefGoogle Scholar
  25. Manjiviona, J., & Prior, M. (1995). Comparison of Asperger syndrome and high-functioning autistic children on a test of motor impairment. Journal of Autism & Developmental Disorders, 25(1), 23–39.CrossRefGoogle Scholar
  26. Mari, M., Castiello, U., Marks, D., Marraffa, C., & Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London–Series B: Biological Sciences, 358(1430), 393–403.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 41(3), 365–378.PubMedCrossRefGoogle Scholar
  28. Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63(11), 2056–2061.PubMedCrossRefGoogle Scholar
  29. Miyahara, M., Tsujii, M., Hori, M., Nakanishi, K., Kageyama, H., & Sugiyama, T. (1997). Brief report: motor incoordination in children with Asperger syndrome and learning disabilities. Journal of Autism & Developmental Disorders, 27(5), 595–603.CrossRefGoogle Scholar
  30. Molloy, C. A., Dietrich, K. N., & Bhattacharya, A. (2003). Postural stability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 33(6), 643–652.PubMedCrossRefGoogle Scholar
  31. Rand, M. K., Shimansky, Y., Stelmach, G. E., Bracha, V., & Bloedel, J. R. (2000). Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Experimental Brain Research, 135(2), 179–188.PubMedCrossRefGoogle Scholar
  32. Rinehart, N. J., Bellgrove, M. A., Tonge, B. J., Brereton, A. V., Howells-Rankin, D., & Bradshaw, J. L. (2006). An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: Further evidence for a motor planning deficit. [Research Support, Non-U.S. Gov’t]. Journal of Autism & Developmental Disorders, 36(6), 757–767. doi: 10.1007/s10803-006-0118-x.CrossRefGoogle Scholar
  33. Shumway-Cook, A., & Woollacott, M. H. (2001). Motor control: Theory and practical applications. Baltimore MA: Lippincott Williams & Willkins.Google Scholar
  34. Smyth, M. M., Anderson, H. I., & Churchill, A. C. (2001). Visual information and the control of reaching in children: A comparison between children with and without developmental coordination disorder. Journal of Motor Behavior, 33(3), 306–320.PubMedCrossRefGoogle Scholar
  35. Stoit, A. M., van Schie, H. T., Slaats-Willemse, D. I., & Buitelaar, J. K. (2013). Grasping motor impairments in autism: Not action planning but movement execution is deficient. [Research Support, Non-U.S. Gov’t]. Journal of Autism & Developmental Disorders, 43(12), 2793–2806. doi: 10.1007/s10803-013-1825-8.CrossRefGoogle Scholar
  36. Tomchek, S. D. (2003). Assessment of individuals with an autism spectrum disorder utilizing a sensorimotor approach. In R. A. Huebner (Ed.), Autism: A sensorimotor approach to management (pp. 103–138). Austin: ProEd.Google Scholar
  37. Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. [Comparative Study]. The American Journal of Occupational Therapy, 61(2), 190–200.PubMedCrossRefGoogle Scholar
  38. Wing, A. M., Turton, A., & Fraser, C. (1986). Grasp size and accuracy of approach in reaching. Journal of Motor Behavior, 18(3), 245–260.PubMedCrossRefGoogle Scholar
  39. Wu, C., Trombly, C. A., Lin, K., & Tickle-Degnen, L. (2000). A kinematic study of contextual effects on reaching performance in persons with and without stroke: Influences of object availability. Archives of Physical Medicine and Rehabilitation, 81(1), 95–101.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physical Medicine and RehabilitationNational Cheng Kung University HospitalTainanTaiwan
  2. 2.Department of Healthcare Administration and Medical InformaticsKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Department of Occupational TherapyNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations