Journal of Autism and Developmental Disorders

, Volume 44, Issue 9, pp 2209–2220 | Cite as

Abnormal Corpus Callosum Connectivity, Socio-communicative Deficits, and Motor Deficits in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study

  • Ryuzo Hanaie
  • Ikuko Mohri
  • Kuriko Kagitani-Shimono
  • Masaya Tachibana
  • Junko Matsuzaki
  • Yoshiyuki Watanabe
  • Norihiko Fujita
  • Masako TaniikeEmail author
Original Paper


In addition to social and communicative deficits, many studies have reported motor deficits in autism spectrum disorder (ASD). This study investigated the macro and microstructural properties of the corpus callosum (CC) of 18 children with ASD and 12 typically developing controls using diffusion tensor imaging tractography. We aimed to explore whether abnormalities of the CC were related to motor deficits, as well as social and communication deficits in children with ASD. The ASD group displayed abnormal macro and microstructure of the total CC and its subdivisions and its structural properties were related to socio-communicative deficits, but not to motor deficits in ASD. These findings advance our understanding of the contributions of the CC to ASD symptoms.


Diffusion tensor imaging Tractography Corpus callosum Autism spectrum disorder Motor function 



This work was supported in part by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (23591494 to K.K-S, 24659497 to M.T) and by the Osaka University Program for the Support of Networking among Present and Future Women Researchers (to M.I). We thank Mayumi Wada and Shun Ochi for helping with our volumetric analysis and are grateful to all of the children and parents who participated in this study.


  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed. text revision). Washington, DC: American Psychiatric Association.Google Scholar
  2. Aoki, Y., Abe, O., Nippashi, Y., & Yamasue, H. (2013). Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: A meta-analysis of diffusion tensor imaging tractography studies. Molecular Autism,. doi: 10.1186/2040-2392-4-25.PubMedCentralPubMedGoogle Scholar
  3. Bakhtiari, R., Zürcher, N. R., Rogier, O., Russo, B., Hippolyte, L., Granziera, C., et al. (2012). Differences in white matter reflect atypical developmental trajectory in autism: A tract-based spatial statistics study. NeuroImage (Amst),. doi: 10.1016/j.nicl.2012.09.001.Google Scholar
  4. Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., & Reiss, A. L. (2004). White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biological Psychiatry, 55, 323–326.PubMedCrossRefGoogle Scholar
  5. Beaule, V., Tremblay, S., & Theoret, H. (2012). Interhemispheric control of unilateral movement. Neural Plasticity,. doi: 10.1155/2012/627816.PubMedCentralPubMedGoogle Scholar
  6. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57, 289–300.Google Scholar
  7. Bloom, J. S., & Hynd, G. W. (2005). The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition? Neuropsychology Review, 15, 59–71.PubMedCrossRefGoogle Scholar
  8. Budde, M. D., Xie, M., Cross, A. H., & Song, S. K. (2009). Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: A quantitative pixelwise analysis. Journal of Neuroscience, 29, 2805–2813.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cardinale, R. C., Shih, P., Fishman, I., Ford, L. M., & Muller, R. A. (2013). Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. JAMA Psychiatry,. doi: 10.1001/jamapsychiatry.2013.382.PubMedGoogle Scholar
  10. Casanova, M. F., El-Baz, A., Mott, M., Mannheim, G., Hassan, H., Fahmi, R., et al. (2009). Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy. Journal of Autism and Developmental Disorders, 39, 751–764.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cheng, Y., Chou, K. H., Chen, I. Y., Fan, Y. T., Decety, J., & Lin, C. P. (2010). Atypical development of white matter microstructure in adolescents with autism spectrum disorders. Neuroimage, 50, 873–882.PubMedCrossRefGoogle Scholar
  12. Clawson, A., Clayson, P. E., South, M., Bigler, E. D., & Larson, M. J. (2013). An electrophysiological investigation of interhemispheric transfer time in children and adolescents with high-functioning autism spectrum disorders. Journal of Autism and Developmental Disorders,. doi: 10.1007/s10803-013-1895-7.PubMedGoogle Scholar
  13. Corbett, B. A., Carmean, V., Ravizza, S., Wendelken, C., Henry, M. L., Carter, C., et al. (2009). A functional and structural study of emotion and face processing in children with autism. Psychiatry Research, 173, 196–205.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMedCrossRefGoogle Scholar
  15. De Fosse, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S, Jr, McGrath, L., et al. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56, 757–766.PubMedCrossRefGoogle Scholar
  16. de Laat, K. F., Tuladhar, A. M., van Norden, A. G. W., Norris, D. G., Zwiers, M. P., & de Leeuw, F.-E. (2011). Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain, 134, 73–83.PubMedCrossRefGoogle Scholar
  17. Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15, 331–343.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Douaud, G., Jbabdi, S., Behrens, T. E., Menke, R. A., Gass, A., Monsch, A. U., et al. (2011). DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage, 55, 880–890.PubMedCrossRefGoogle Scholar
  19. Eliassen, J. C., Baynes, K., & Gazzaniga, M. S. (2000). Anterior and posterior callosal contributions to simultaneous bimanual movements of the hands and fingers. Brain, 123(Pt 12), 2501–2511.PubMedCrossRefGoogle Scholar
  20. Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40, 1227–1240.PubMedCrossRefGoogle Scholar
  21. Frazier, T. W., Keshavan, M. S., Minshew, N. J., & Hardan, A. Y. (2012). A two-year longitudinal MRI study of the corpus callosum in autism. Journal of Autism and Developmental Disorders, 42, 2312–2322.PubMedCrossRefGoogle Scholar
  22. Freitag, C. M., Luders, E., Hulst, H. E., Narr, K. L., Thompson, P. M., Toga, A. W., et al. (2009). Total brain volume and corpus callosum size in medication-naive adolescents and young adults with autism spectrum disorder. Biological Psychiatry, 66, 316–319.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gage, N. M., Juranek, J., Filipek, P. A., Osann, K., Flodman, P., Isenberg, A. L., et al. (2009). Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: An MRI investigation. Journal of Neurodevelopmental Disorders, 1, 205–214.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Glazebrook, C., Gonzalez, D., Hansen, S., & Elliott, D. (2009). The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism, 13, 411–433.PubMedCrossRefGoogle Scholar
  25. Hanaie, R., Mohri, I., Kagitani-Shimono, K., Tachibana, M., Azuma, J., Matsuzaki, J., et al. (2013). Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum,. doi: 10.1007/s12311-013-0475-x.PubMedGoogle Scholar
  26. Hardan, A. Y., Libove, R. A., Keshavan, M. S., Melhem, N. M., & Minshew, N. J. (2009a). A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism. Biological Psychiatry, 66, 320–326.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hardan, A. Y., Pabalan, M., Gupta, N., Bansal, R., Melhem, N. M., Fedorov, S., et al. (2009b). Corpus callosum volume in children with autism. Psychiatry Research, 174, 57–61.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223–233.PubMedCrossRefGoogle Scholar
  29. Heim, S., Amunts, K., Hensel, T., Grande, M., Huber, W., Binkofski, F., et al. (2012). The role of human parietal area 7A as a link between sequencing in hand actions and in overt speech production. Frontiers in Psychology,. doi: 10.3389/fpsyg.2012.00534.Google Scholar
  30. Henderson, S., Sugden, D., & Barnett, A. L. (2007). The movement assessment battery for children (2nd ed.). London: The Psychological Corporation.Google Scholar
  31. Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., et al. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52, 588–596.PubMedCrossRefGoogle Scholar
  32. Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32, 989–994.PubMedCrossRefGoogle Scholar
  33. Huang, H., Zhang, J., Jiang, H., Wakana, S., Poetscher, L., Miller, M. I., et al. (2005). DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum. Neuroimage, 26, 195–205.PubMedCrossRefGoogle Scholar
  34. Huang, H., Zhang, J., van Zijl, P. C., & Mori, S. (2004). Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magnetic Resonance in Medicine, 52, 559–565.PubMedCrossRefGoogle Scholar
  35. Innocenti, G. M. (2009). Dynamic interactions between the cerebral hemispheres. Experimental Brain Research, 192, 417–423.PubMedCrossRefGoogle Scholar
  36. Jansiewicz, E. M., Goldberg, M. C., Newschaffer, C. J., Denckla, M. B., Landa, R., & Mostofsky, S. H. (2006). Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. Journal of Autism and Developmental Disorders, 36, 613–621.PubMedCrossRefGoogle Scholar
  37. Jasmin, E., Couture, M., McKinley, P., Reid, G., Fombonne, E., & Gisel, E. (2009). Sensori-motor and daily living skills of preschool children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 231–241.PubMedCrossRefGoogle Scholar
  38. Johnson, B. P., Rinehart, N. J., Papadopoulos, N., Tonge, B., Millist, L., White, O., et al. (2012). A closer look at visually guided saccades in autism and Asperger’s disorder. Frontiers in Integrative Neuroscience,. doi: 10.3389/fnint.2012.00099.Google Scholar
  39. Jones, D. K., Knosche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage, 73, 239–254.PubMedCrossRefGoogle Scholar
  40. Kana, R. K., Libero, L. E., Hu, C. P., Deshpande, H. D., & Colburn, J. S. (2012). Functional brain networks and white matter underlying theory-of-mind in autism. Social Cognitive and Affective Neuroscience,. doi: 10.1093/scan/nss106.PubMedCentralGoogle Scholar
  41. Keary, C. J., Minshew, N. J., Bansal, R., Goradia, D., Fedorov, S., Keshavan, M. S., et al. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39, 834–841.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Kjelgaard, M. M., & Tager-Flusberg, H. (2001). An investigation of language impairment in autism: implications for genetic subgroups. Language and Cognitive Processes, 16, 287–308.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Knaus, T. A., Silver, A. M., Dominick, K. C., Schuring, M. D., Shaffer, N., Lindgren, K. A., et al. (2009). Age-related changes in the anatomy of language regions in autism spectrum disorder. Brain Imaging and Behavior, 3, 51–63.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kumar, A., Sundaram, S. K., Sivaswamy, L., Behen, M. E., Makki, M. I., Ager, J., et al. (2010). Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cerebral Cortex, 20, 2103–2113.PubMedCrossRefGoogle Scholar
  45. Lau, Y. C., Hinkley, L. B., Bukshpun, P., Strominger, Z. A., Wakahiro, M. L., Baron-Cohen, S., et al. (2013). Autism traits in individuals with agenesis of the corpus callosum. Journal of Autism and Developmental Disorders, 43, 1106–1118.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Leary, M. R., & Hill, D. A. (1996). Moving on: Autism and movement disturbance. Mental Retardation, 34, 39–53.PubMedGoogle Scholar
  47. Lebel, C., Benner, T., & Beaulieu, C. (2012). Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. Magnetic Resonance in Medicine, 68, 474–483.PubMedCrossRefGoogle Scholar
  48. Lebel, C., Caverhill-Godkewitsch, S., & Beaulieu, C. (2010). Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage, 52, 20–31.PubMedCrossRefGoogle Scholar
  49. Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedCrossRefGoogle Scholar
  50. Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63, 2056–2061.PubMedCrossRefGoogle Scholar
  51. Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Archives of Neurology, 64, 945–950.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Moes, P., Schilmoeller, K., & Schilmoeller, G. (2009). Physical, motor, sensory and developmental features associated with agenesis of the corpus callosum. Child: Care, Health and Development, 35, 656–672.Google Scholar
  53. Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45, 265–269.PubMedCrossRefGoogle Scholar
  54. Mostofsky, S. H., & Ewen, J. B. (2011). Altered connectivity and action model formation in autism is autism. Neuroscientist, 17, 437–448.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132, 2413–2425.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Noriuchi, M., Kikuchi, Y., Yoshiura, T., Kira, R., Shigeto, H., Hara, T., et al. (2010). Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Research, 1362, 141–149.PubMedCrossRefGoogle Scholar
  57. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  58. Pannek, K., Mathias, J. L., Bigler, E. D., Brown, G., Taylor, J. D., & Rose, S. (2010). An automated strategy for the delineation and parcellation of commissural pathways suitable for clinical populations utilising high angular resolution diffusion imaging tractography. Neuroimage, 50, 1044–1053.PubMedCrossRefGoogle Scholar
  59. Park, H. J., Kim, J. J., Lee, S. K., Seok, J. H., Chun, J., Kim, D. I., et al. (2008). Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Human Brain Mapping, 29, 503–516.PubMedCrossRefGoogle Scholar
  60. Paus, T., & Toro, R. (2009). Could sex differences in white matter be explained by g ratio? Frontiers in Neuroanatomy,. doi: 10.3389/neuro.05.014.2009.PubMedCentralPubMedGoogle Scholar
  61. Prigge, M. B., Lange, N., Bigler, E. D., Merkley, T. L., Neeley, E. S., Abildskov, T. J., et al. (2013). Corpus callosum area in children and adults with autism. Research in Autism Spectrum Disorders, 7, 221–234.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Qiu, A., Adler, M., Crocetti, D., Miller, M. I., & Mostofsky, S. H. (2010). Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 539–551.PubMedGoogle Scholar
  63. Rademaker, K. J., Lam, J. N., Van Haastert, I. C., Uiterwaal, C. S., Lieftink, A. F., Groenendaal, F., et al. (2004). Larger corpus callosum size with better motor performance in prematurely born children. Seminars in Perinatology, 28, 279–287.PubMedCrossRefGoogle Scholar
  64. Redcay, E. (2008). The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neuroscience and Biobehavioral Reviews, 32, 123–142.PubMedCrossRefGoogle Scholar
  65. Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., Iansek, R., Enticott, P. G., & McGinley, J. (2006). Gait function in high-functioning autism and Asperger’s disorder: Evidence for basal-ganglia and cerebellar involvement? European Child and Adolescent Psychiatry, 15, 256–264.PubMedCrossRefGoogle Scholar
  66. Schwartz, E. D., Cooper, E. T., Fan, Y., Jawad, A. F., Chin, C. L., Nissanov, J., et al. (2005). MRI diffusion coefficients in spinal cord correlate with axon morphometry. NeuroReport, 16, 73–76.PubMedCrossRefGoogle Scholar
  67. Shukla, D. K., Keehn, B., Lincoln, A. J., & Muller, R. A. (2010). White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: A diffusion tensor imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 1269–1278., 1278 e1261–e1262.PubMedCentralPubMedGoogle Scholar
  68. Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20, 1714–1722.PubMedCrossRefGoogle Scholar
  69. Thomas, C., Humphreys, K., Jung, K. J., Minshew, N., & Behrmann, M. (2011). The anatomy of the callosal and visual-association pathways in high-functioning autism: A DTI tractography study. Cortex, 47, 863–873.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65, 1532–1556.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Townsend, J., Courchesne, E., & Egaas, B. (1996). Slowed orienting of covert visual-spatial attention in autism: Specific deficits associated with cerebellar and parietal abnormality. Development and Psychopathology, 8, 563–584.CrossRefGoogle Scholar
  72. Travers, B. G., Adluru, N., Ennis, C., Tromp do, P. M., Destiche, D., Doran, S., et al. (2012). Diffusion tensor imaging in autism spectrum disorder: A review. Autism Research, 5, 289–313.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Vidal, C. N., Nicolson, R., DeVito, T. J., Hayashi, K. M., Geaga, J. A., Drost, D. J., et al. (2006). Mapping corpus callosum deficits in autism: An index of aberrant cortical connectivity. Biological Psychiatry, 60, 218–225.PubMedCrossRefGoogle Scholar
  74. Vigneau, M., Beaucousin, V., Herve, P. Y., Duffau, H., Crivello, F., Houde, O., et al. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage, 30, 1414–1432.PubMedCrossRefGoogle Scholar
  75. Vollm, B. A., Taylor, A. N., Richardson, P., Corcoran, R., Stirling, J., McKie, S., et al. (2006). Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task. Neuroimage, 29, 90–98.PubMedCrossRefGoogle Scholar
  76. Waiter, G. D., Williams, J. H., Murray, A. D., Gilchrist, A., Perrett, D. I., & Whiten, A. (2005). Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: A voxel-based investigation. Neuroimage, 24, 455–461.PubMedCrossRefGoogle Scholar
  77. Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., et al. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36, 630–644.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Whyatt, C. P., & Craig, C. M. (2012). Motor skills in children aged 7–10 years, diagnosed with autism spectrum disorder. Journal of Autism and Developmental Disorders, 42, 1799–1809.PubMedCrossRefGoogle Scholar
  79. Williams, D. L., Cherkassky, V. L., Mason, R. A., Keller, T. A., Minshew, N. J., & Just, M. A. (2013). Brain function differences in language processing in children and adults with autism. Autism Research,. doi: 10.1002/aur.1291.Google Scholar
  80. Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., et al. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry, 169, 589–600.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Wu, Q., Butzkueven, H., Gresle, M., Kirchhoff, F., Friedhuber, A., Yang, Q., et al. (2007). MR diffusion changes correlate with ultra-structurally defined axonal degeneration in murine optic nerve. Neuroimage, 37, 1138–1147.PubMedCrossRefGoogle Scholar
  82. Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2013). Spurious group differences due to head motion in a diffusion MRI study. Neuroimage, 88C, 79–90.PubMedGoogle Scholar
  83. Zwarts, M. J., & Guechev, A. (1995). The relation between conduction velocity and axonal length. Muscle and Nerve, 18, 1244–1249.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ryuzo Hanaie
    • 1
  • Ikuko Mohri
    • 1
    • 2
    • 3
  • Kuriko Kagitani-Shimono
    • 1
    • 3
  • Masaya Tachibana
    • 1
    • 3
  • Junko Matsuzaki
    • 2
  • Yoshiyuki Watanabe
    • 4
  • Norihiko Fujita
    • 4
  • Masako Taniike
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of Developmental NeuroscienceUnited Graduate School of Child Development, Osaka UniversitySuitaJapan
  2. 2.Molecular Research Center for Children’s Mental DevelopmentUnited Graduate School of Child Development, Osaka UniversitySuitaJapan
  3. 3.Department of PediatricsOsaka University Graduate School of MedicineSuitaJapan
  4. 4.Department of Diagnostic and Interventional RadiologyOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations