Journal of Autism and Developmental Disorders

, Volume 44, Issue 6, pp 1433–1446 | Cite as

Right Temporoparietal Gray Matter Predicts Accuracy of Social Perception in the Autism Spectrum

  • Nicole David
  • Johannes Schultz
  • Elizabeth Milne
  • Odette Schunke
  • Daniel Schöttle
  • Alexander Münchau
  • Markus Siegel
  • Kai Vogeley
  • Andreas K. Engel
Original Paper

Abstract

Individuals with an autism spectrum disorder (ASD) show hallmark deficits in social perception. These difficulties might also reflect fundamental deficits in integrating visual signals. We contrasted predictions of a social perception and a spatial–temporal integration deficit account. Participants with ASD and matched controls performed two tasks: the first required spatiotemporal integration of global motion signals without social meaning, the second required processing of socially relevant local motion. The ASD group only showed differences to controls in social motion evaluation. In addition, gray matter volume in the temporal–parietal junction correlated positively with accuracy in social motion perception in the ASD group. Our findings suggest that social–perceptual difficulties in ASD cannot be reduced to deficits in spatial–temporal integration.

Keywords

Autism Asperger syndrome Motion coherence Animacy Social perception Voxel-based morphometry 

References

  1. Abell, F., Happe, F., & Frith, U. (2000). Do triangles play tricks? Attribution of mental states to animated shapes in normal and abnormal development. Journal of Cognitive Development, 15, 1–16.CrossRefGoogle Scholar
  2. Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., et al. (1999). The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. NeuroReport, 10(8), 1647–1651.PubMedCrossRefGoogle Scholar
  3. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165–178.PubMedCrossRefGoogle Scholar
  4. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.PubMedCrossRefGoogle Scholar
  5. Annaz, D., Remington, A., Milne, E., Coleman, M., Campbell, R., Thomas, M. S. C., et al. (2010). Development of motion processing in children with autism. Developmental Science, 13(6), 826–838.PubMedCrossRefGoogle Scholar
  6. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6), 805–821.PubMedCrossRefGoogle Scholar
  7. Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47(13), 3023–3029.PubMedCrossRefGoogle Scholar
  8. Baron-Cohen, S., Leslie, A., & Frith, U. (1985). Does the autistic child have a theory of mind? Cognition, 21, 37–46.PubMedCrossRefGoogle Scholar
  9. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17.PubMedCrossRefGoogle Scholar
  10. Bastiaansen, J. A., Meffert, H., Hein, S., Huizinga, P., Ketelaars, C., Pijnenborg, M., et al. (2011). Diagnosing autism spectrum disorders in adults: The use of Autism Diagnostic Observation Schedule (ADOS) module 4. Journal of Autism and Developmental Disorders, 41, 1256–1266.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10(6), 258–264.PubMedCrossRefGoogle Scholar
  12. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(10), 2430–2441.PubMedCrossRefGoogle Scholar
  13. Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14, 163–164.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Blake, R., Turner, L., Smoski, M., Pozdol, S., & Stone, W. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151–157.PubMedCrossRefGoogle Scholar
  15. Blanke, O. (2005). The out-of-body experience: Disturbed self-processing at the temporo-parietal junction. The Neuroscientist, 11(1), 16–24.PubMedCrossRefGoogle Scholar
  16. Boddaert, N., Chabane, N., Gervais, H., Good, C., Bourgeois, M., Plumet, M.-H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry MRI study. NeuroImage, 23(1), 364–369.PubMedCrossRefGoogle Scholar
  17. Brambilla, P., Nicoletti, M. A., Sassi, R. B., Mallinger, A. G., Frank, E., Kupfer, D. J., et al. (2003). Magnetic resonance imaging study of corpus callosum abnormalities in patients with bipolar disorder. Biological Psychiatry, 54(11), 1294–1297.PubMedCrossRefGoogle Scholar
  18. Brieber, S., Neufang, S., Bruning, N., Kamp-Becker, I., Remschmidt, H., Herpertz-Dahlmann, B., et al. (2007). Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 48(12), 1251–1258.PubMedCrossRefGoogle Scholar
  19. Brosnan, M. J., Scott, F. J., Fox, S., & Pye, J. (2004). Gestalt processing in autism: Failure to process perceptual relationships and the implications for contextual understanding. Journal of Child Psychology and Psychiatry, 45(3), 459–469.PubMedCrossRefGoogle Scholar
  20. Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., et al. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365–376.PubMedCrossRefGoogle Scholar
  21. Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 1839–1849.PubMedCrossRefGoogle Scholar
  22. Castelli, F., Happé, F., Frith, U., Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12, 314–325.PubMedCrossRefGoogle Scholar
  23. Cheverud, J. M. (2001). A simple correction for multiple comparisons in interval mapping genome scans. Heredity, 87, 52–58.PubMedCrossRefGoogle Scholar
  24. Congiu, S., Schlottmann, A., & Ray, E. (2010). Unimpaired perception of social and physical causality, but impaired perception of animacy in high functioning children with autism. Journal of Autism and Developmental Disorders, 40, 39–53.PubMedCrossRefGoogle Scholar
  25. Corbetta, M., Kincade, J., Ollinger, J., McAvoy, M., & Shulman, G. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292–297.PubMedCrossRefGoogle Scholar
  26. Corbetta, M., Miezin, F., Dobmeyer, S., Shulman, G., & Petersen, S. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. The Journal of Neuroscience, 11(8), 2383–2402.PubMedGoogle Scholar
  27. Courchesne, E., Townsend, J., Akshoomoff, N. A., Saitoh, O., Yeung-Courchesne, R., Lincoln, A. J., et al. (1994). Impairment in shifting attention in autistic and cerebellar patients. Behavioral Neuroscience, 108(5), 848–865.PubMedCrossRefGoogle Scholar
  28. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507.PubMedCrossRefGoogle Scholar
  29. de Jonge, M. V., Kemner, C., de Haan, E. H., Coppens, J. E., van den Berg, T. J. T. P., & van Engeland, H. (2007). Visual information processing in high-functioning individuals with autism spectrum disorders and their parents. Neuropsychology, 21(1), 65–73.PubMedCrossRefGoogle Scholar
  30. Decety, J., & Lamm, C. (2007). The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to meta-cognition. The Neuroscientist, 13, 580–593.PubMedCrossRefGoogle Scholar
  31. Del Viva, M. M., Igliozzi, R., Tancredi, R., & Brizzolara, D. (2006). Spatial and motion integration in children with autism. Vision Research, 46(8–9), 1242–1252.PubMedCrossRefGoogle Scholar
  32. den Ouden, H. E. M., Frith, U., Frith, C., & Blakemore, S. J. (2005). Thinking about intentions. NeuroImage, 28, 787–796.CrossRefGoogle Scholar
  33. Di Martino, A., Ross, K., Uddin, L. Q., Sklar, A. B., Castellanos, F. X., & Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65(1), 63–74.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Duvernoy, H. (1999). The human brain. New York: Springer.CrossRefGoogle Scholar
  35. Dziobek, I., Bahnemann, M., Convit, A., & Heekeren, H. R. (2010). The role of the fusiform–amygdala system in the pathophysiology of autism. Archives of General Psychiatry, 67(4), 397–405.PubMedCrossRefGoogle Scholar
  36. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–1335.PubMedCrossRefGoogle Scholar
  37. Frith, C. D., & Frith, U. (1999). Interacting minds—A biological basis. Science, 286(5445), 1692–1695.PubMedCrossRefGoogle Scholar
  38. Goldstein, G., Johnson, C. R., & Minshew, N. J. (2001). Attentional processes in autism. Journal of Autism and Developmental Disorders, 31(4), 433–440.PubMedCrossRefGoogle Scholar
  39. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.PubMedCrossRefGoogle Scholar
  40. Heider, F., & Simmel, M. (1944). An experimental study of apparent behaviour. American Journal of Psychology, 57, 243–259.CrossRefGoogle Scholar
  41. Hobson, R. P., Ouston, J., & Lee, A. (1988). What’s in a face? The case of autism. British Journal of Psychology, 79(4), 441–453.PubMedCrossRefGoogle Scholar
  42. Hubert, B., Wicker, B., Moore, D. G., Monfardini, E., Duverger, H., Da Fonseca, D., et al. (2007). Brief report: Recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 37(7), 1386–1392.PubMedCrossRefGoogle Scholar
  43. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201–211.CrossRefGoogle Scholar
  44. Jones, C. R. G., Swettenham, J., Charman, T., Marsden, A. J. S., Tregay, J., Baird, G., et al. (2011). No evidence for a fundamental visual motion processing deficit in adolescents with autism spectrum disorders. Autism Research, 4(5), 347–357.PubMedCrossRefGoogle Scholar
  45. Kanai, R., Bahrami, B., Duchaine, B., Janik, A., Banissy, M. J., & Rees, G. (2012a). Brain structure links loneliness to social perception. Current Biology, 22, 1975–1979.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kanai, R., Bahrami, B., Roylance, R., & Rees, G. (2012b). Online social network size is reflected in human brain structure. Proceedings of the Royal Society of London Series B-Biological Sciences, 279(1732), 1327–1334.CrossRefGoogle Scholar
  47. Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231–242.PubMedCrossRefGoogle Scholar
  48. Ke, X., Tang, T., Hong, S., Hang, Y., Zou, B., Li, H., et al. (2009). White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging. Brain Research, 1265, 171–177.PubMedCrossRefGoogle Scholar
  49. Klin, A., & Jones, W. (2006). Attributing social and physical meaning to ambiguous visual displays in individuals with higher-functioning autism spectrum disorders. Brain and Cognition, 61(1), 40–53.PubMedCrossRefGoogle Scholar
  50. Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459, 257–261.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Koldewyn, K., Whitney, D., & Rivera, S. (2010). The psychophysics of visual motion and global form processing in autism. Brain, 133(2), 599–610.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Koldewyn, K., Whitney, D., & Rivera, S. M. (2011). Neural correlates of coherent and biological motion perception in autism. Developmental Science, 14(5), 1075–1088.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Kosaka, H., Omori, M., Munesue, T., Ishitobi, M., Matsumura, Y., Takahashi, T., et al. (2010). Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. NeuroImage, 50(4), 1357–1363.PubMedCrossRefGoogle Scholar
  54. Lai, G., Pantazatos, S. P., Schneider, H., & Hirsch, J. (2012). Neural systems for speech and song in autism. Brain, 135(3), 961–975.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Lai, M.-C., Lombardo, M. V., Pasco, G., Ruigrok, A. N. V., Wheelwright, S. J., Sadek, S. A., et al. (2011). A behavioral comparison of male and female adults with high functioning autism spectrum conditions. PLoS ONE, 6, e20835.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Langdell, T. (1978). Recognition of faces: An approach to the study of autism. Journal of Child Psychology and Psychiatry, 19(3), 255–268.PubMedCrossRefGoogle Scholar
  57. Lehrl, S. (1995). Mehrfachwahl-Wortschatz-Intelligenztest MWT-B. Balingen: Spitta Verlag.Google Scholar
  58. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedCrossRefGoogle Scholar
  59. Luks, T. L., & Simpson, G. V. (2004). Preparatory deployment of attention to motion activates higher-order motion-processing brain regions. NeuroImage, 22(4), 1515–1522.PubMedCrossRefGoogle Scholar
  60. Mars, R. B., Sallet, J., Schüffelgen, U., Jbabdi, S., Toni, I., & Rushworth, M. F. S. (2011). Connectivity-based subdivisions of the human right “temporoparietal junction area”: Evidence for different areas participating in different cortical networks. Cerebral Cortex, 22(8), 1894–1903.PubMedCrossRefGoogle Scholar
  61. Milne, E., & Griffiths, H. J. (2007). Visual perception and visual dysfunction in ASD. British and Irish Orthoptic Journal, 4, 15–20.Google Scholar
  62. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263.PubMedCrossRefGoogle Scholar
  63. Milne, E., White, S., Campbell, R., Swettenham, J., Hansen, P., & Ramus, F. (2006). Motion and form coherence detection in autistic spectrum disorder: Relationship to motor control and 2:4 digit ratio. Journal of Autism and Developmental Disorders, 36(2), 225–237.PubMedCrossRefGoogle Scholar
  64. Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36(1), 341–349.PubMedCrossRefGoogle Scholar
  65. Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.PubMedCrossRefGoogle Scholar
  66. Nickl-Jockschat, T., Habel, U., Maria Michel, T., Manning, J., Laird, A. R., Fox, P. T., et al. (2011). Brain structure anomalies in autism spectrum disorder—A meta-analysis of VBM studies using anatomic likelihood estimation. Human Brain Mapping, 33, 1470–1489.PubMedCrossRefGoogle Scholar
  67. Nordahl, C. W., Dierker, D., Mostafavi, I., Schumann, C. M., Rivera, S. M., Amaral, D. G., et al. (2007). Cortical folding abnormalities in autism revealed by surface-based morphometry. The Journal of Neuroscience, 27(43), 11725–11735.PubMedCrossRefGoogle Scholar
  68. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  69. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1–9.CrossRefGoogle Scholar
  70. Parron, C., Da Fonseca, D., Santos, A., Moore, D., Monfardini, E., & Deruelle, C. (2008). Recognition of biological motion in children with autistic spectrum disorders. Autism, 12(3), 261–274.PubMedCrossRefGoogle Scholar
  71. Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 1044–1053.PubMedCrossRefGoogle Scholar
  72. Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271–276.CrossRefGoogle Scholar
  73. Riva, D., Bulgheroni, S., Aquino, D., Di Salle, F., Savoiardo, M., & Erbetta, A. (2011). Basal forebrain involvement in low-functioning autistic children: A voxel-based morphometry study. American Journal of Neuroradiology, 32(8), 1430–1435.PubMedCrossRefGoogle Scholar
  74. Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., & Tregellas, J. R. (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry, 6(1), 56.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Sallet, J., Mars, R. B., Noonan, M. P., Andersson, J. L., O’Reilly, J. X., Jbabdi, S., et al. (2011). Social network size affects neural circuits in macaques. Science, 334(6056), 697–700.PubMedCrossRefGoogle Scholar
  76. Salmond, C. H., Ashburner, J., Connelly, A., Friston, K. J., Gadian, D. G., & Vargha-Khadem, F. (2005). The role of the medial temporal lobe in autistic spectrum disorders. European Journal of Neuroscience, 22, 764–772.PubMedCrossRefGoogle Scholar
  77. Salmond, C. H., Vargha-Khadem, F., Gadian, D. G., de Haan, M., & Baldeweg, T. (2007). Heterogeneity in the patterns of neural abnormality in autistic spectrum disorders: Evidence from ERP and MRI. Cortex, 43(6), 686–699.PubMedCrossRefGoogle Scholar
  78. Sánchez-Cubillo, I., Periáñez, J. A., Acrover-Roig, D., Rodríguez-Sánchez, J. M., Ríos-Lago, M., Tirapu, J., et al. (2009). Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(03), 438–450.PubMedCrossRefGoogle Scholar
  79. Sanchez-Marin, F. J., & Padilla-Medina, J. A. (2008). A psychophysical test of the visual pathway of children with autism. Journal of Autism and Developmental Disorders, 38(7), 1270–1277.PubMedCrossRefGoogle Scholar
  80. Santiesteban, I., Banissy, M. J., Catmur, C., Bird, G. (2012). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22, 2274–2277.PubMedCrossRefGoogle Scholar
  81. Saxe, R. (2006). Uniquely human social cognition. Current Opinion in Neurobiology, 16(2), 235–239.PubMedCrossRefGoogle Scholar
  82. Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19(4), 1835–1842.PubMedCrossRefGoogle Scholar
  83. Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., & Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology, 118(1), 98–104.PubMedCrossRefGoogle Scholar
  84. Schultz, J., Friston, K. J., O’Doherty, J., Wolpert, D. M., & Frith, C. D. (2005). Activation in posterior superior temporal sulcus parallels parameter inducing the percept of animacy. Neuron, 45(4), 625–635.PubMedCrossRefGoogle Scholar
  85. Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L. W., Snyder, A. Z., McAvoy, M. P., et al. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. The Journal of Neuroscience, 29(14), 4392–4407.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Spencer, J., O’Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion processing in autism: Evidence for a dorsal stream deficiency. NeuroReport, 11(12), 2765–2767.PubMedCrossRefGoogle Scholar
  87. Sugranyes, G., Kyriakopoulos, M., Corrigall, R., Taylor, E., & Frangou, S. (2011). Autism spectrum disorders and schizophrenia: Meta-analysis of the neural correlates of social cognition. PLoS ONE, 6(10), e25322.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Takarae, Y., Luna, B., Minshew, N. J., & Sweeney, J. A. (2008). Patterns of visual sensory and sensorimotor abnormalities in autism vary in relation to history of early language delay. Journal of the International Neuropsychology Society, 14(6), 980–989.CrossRefGoogle Scholar
  89. Toal, F., Daly, E. M., Page, L., Deeley, Q., Hallahan, B., Bloemen, O., et al. (2010). Clinical and anatomical heterogeneity in autistic spectrum disorder: A structural MRI study. Psychological Medicine, 40(7), 1171–1181.PubMedCrossRefGoogle Scholar
  90. Tremoulet, P. D., & Feldman, J. (2000). Perception of animacy from the motion of a single object. Perception, 29(8), 943–951.PubMedCrossRefGoogle Scholar
  91. Tsermentseli, S., O’Brien, J. M., & Spencer, J. V. (2008). Comparison of form and motion coherence processing in autistic spectrum disorders and dyslexia. Journal of Autism and Developmental Disorders, 38(7), 1201–1210.PubMedCrossRefGoogle Scholar
  92. Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829–858.PubMedCrossRefGoogle Scholar
  93. Vandenbroucke, M. W. G., Steven Scholte, H., Engeland, H., Lamme, V. A. F., & Kemner, C. (2008). Coherent versus component motion perception in autism spectrum disorder. Journal of Autism and Developmental Disorders, 38(5), 941–949.PubMedCrossRefGoogle Scholar
  94. Via, E., Radua, J., Cardoner, N., Happe, F., & Mataix-Cols, D. (2011). Meta-analysis of gray matter abnormalities in autism spectrum disorder: Should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Archives of General Psychiatry, 68(4), 409–418.PubMedCrossRefGoogle Scholar
  95. Wainwright, J. A., & Bryson, S. E. (1996). Visual-spatial orienting in autism. Journal of Autism and Developmental Disorders, 26(4), 423–438.PubMedCrossRefGoogle Scholar
  96. Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., et al. (2002). A general statistical analysis for fMRI data. NeuroImage, 15(1), 1–15.PubMedCrossRefGoogle Scholar
  97. Yu, K. K., Cheung, C., Chua, S. E., & McAlonan, G. M. (2011). Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. Journal of Psychiatry and Neuroscience, 36(6), 412–421.PubMedCentralPubMedCrossRefGoogle Scholar
  98. Zwickel, J., White, S. J., Coniston, D., Senju, A., & Frith, U. (2011). Exploring the building blocks of social cognition: Spontaneous agency perception and visual perspective taking in autism. Social Cognitive and Affective Neuroscience, 6(5), 564–571.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nicole David
    • 1
  • Johannes Schultz
    • 2
    • 3
  • Elizabeth Milne
    • 4
  • Odette Schunke
    • 5
  • Daniel Schöttle
    • 6
  • Alexander Münchau
    • 5
    • 7
  • Markus Siegel
    • 8
  • Kai Vogeley
    • 9
    • 10
  • Andreas K. Engel
    • 1
  1. 1.Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of PsychologyDurham UniversityDurhamUK
  3. 3.Max Planck Institute for Biological CyberneticsTübingenGermany
  4. 4.Department of PsychologyUniversity of SheffieldSheffield, South YorkshireUK
  5. 5.Department of NeurologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  6. 6.Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  7. 7.Division of Clinical and Molecular Neurogenetics, Department of NeurologyUniversity of LübeckLübeckGermany
  8. 8.Centre for Integrative NeuroscienceUniversity of TübingenTübingenGermany
  9. 9.Department of Psychiatry and PsychotherapyUniversity of CologneCologneGermany
  10. 10.Cognitive Neurology Section, Institute of Neuroscience and Medicine (INM3)Research Center JuelichJülichGermany

Personalised recommendations