Journal of Autism and Developmental Disorders

, Volume 46, Issue 5, pp 1553–1561 | Cite as

Auditory Stream Segregation in Autism Spectrum Disorder: Benefits and Downsides of Superior Perceptual Processes

  • Lucie Bouvet
  • Laurent Mottron
  • Sylviane Valdois
  • Sophie Donnadieu
Perception In Autism

Abstract

Auditory stream segregation allows us to organize our sound environment, by focusing on specific information and ignoring what is unimportant. One previous study reported difficulty in stream segregation ability in children with Asperger syndrome. In order to investigate this question further, we used an interleaved melody recognition task with children in the autism spectrum disorder (ASD). In this task, a probe melody is followed by a mixed sequence, made up of a target melody interleaved with a distractor melody. These two melodies have either the same [0 semitone (ST)] or a different mean frequency (6, 12 or 24 ST separation conditions). Children have to identify if the probe melody is present in the mixed sequence. Children with ASD performed better than typical children when melodies were completely embedded. Conversely, they were impaired in the ST separation conditions. Our results confirm the difficulty of children with ASD in using a frequency cue to organize auditory perceptual information. However, superior performance in the completely embedded condition may result from superior perceptual processes in autism. We propose that this atypical pattern of results might reflect the expression of a single cognitive feature in autism.

Keywords

Autism Audition Stream segregation Perception 

Notes

Acknowledgments

We thank Dr. Brigitte Assouline and Dr. Stéphane Cabrol for the recruitment of ASD individuals, Aurélie Bock for data collection. We also thank the participants and their family for their time and commitment.

References

  1. Adams, N., & Jarrold, C. (2012). Inhibition in autism: Children with autism have difficulty inhibiting irrelevant distractors but not prepotent responses. Journal of Autism and Developmental Disorders, 42(6), 1052–1063. doi:10.1007/s10803-011-1345-3.CrossRefPubMedGoogle Scholar
  2. Alcántara, J. I., Weisblatt, E. J. L., Moore, B. C. J., & Bolton, P. F. (2004). Speech-in-noise perception in high-functioning individuals with autism or Asperger’s syndrome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(6), 1107–1114. doi:10.1111/j.1469-7610.2004.t01-1-00303.x.CrossRefGoogle Scholar
  3. APA. (2000). Diagnostic and statistical manual of mental disorders, fourth edition, text revision. Washington: American Psychiatric Association.Google Scholar
  4. Berti, S., Roeber, U., & Schröger, E. (2004). Bottom-up influences on working memory: Behavioral and electrophysiological distraction varies with distractor strength. Experimental psychology, 51, 249–257.CrossRefPubMedGoogle Scholar
  5. Bey, C., & McAdams, S. (2002). Schema-based processing in auditory scene analysis. Perception & Psychophysics, 64(5), 844–854.CrossRefGoogle Scholar
  6. Bey, C., & McAdams, S. (2003). Postrecognition of interleaved melodies as an indirect measure of auditory stream formation. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 267–279.PubMedGoogle Scholar
  7. Bhatara, A., Babikian, T., Laugeson, E., Tachdjian, R., & Sininger, Y. (2013). Impaired timing and frequency discrimination in high-functioning autism spectrum disorders. Journal of Autism and Developmental Disorders, 1–17. doi: 10.1007/s10803-013-1778-y.
  8. Bölte, S., Holtmann, M., Poustka, F., Scheurich, A., & Schmidt, L. (2007). Gestalt perception and local-global processing in high-functioning autism. Journal of Autism and Developmental Disorders, 37(8), 1493–1504. doi:10.1007/s10803-006-0231-x.CrossRefPubMedGoogle Scholar
  9. Bonnel, A., McAdams, S., Smith, B., Berthiaume, C., Bertone, A., Ciocca, V., et al. (2010). Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome. Neuropsychologia, 48(9), 2465–2475. doi:10.1016/j.neuropsychologia.2010.04.020.CrossRefPubMedGoogle Scholar
  10. Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A. M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235.CrossRefPubMedGoogle Scholar
  11. Bregman, A. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge: The MIT Press.Google Scholar
  12. Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence of an inefficient attentional lens. Journal of Abnormal Psychology, 103(3), 535–543. doi:10.1037/0021-843x.103.3.535.CrossRefPubMedGoogle Scholar
  13. Christ, S., Kester, L., Bodner, K., & Miles, J. (2011). Evidence for selective inhibitory impairment in individuals with autism spectrum disorder. Neuropsychology, 25(6), 690–701. doi:10.1037/a0024256.CrossRefPubMedGoogle Scholar
  14. Ciesielski, K. T., Courchesne, E., & Elmasian, R. (1990). Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalography and Clinical Neurophysiology, 75(3), 207–220. doi:10.1016/0013-4694(90)90174-I.CrossRefPubMedGoogle Scholar
  15. DePape, A.-M. R., Hall, G. B. C., Tillmann, B., & Trainor, L. J. (2012). Auditory processing in high-functioning adolescents with autism spectrum disorder. PLoS ONE, 7(9), e44084. doi:10.1371/journal.pone.0044084.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dowling, W. J. (1973). The perception of interleaved melodies. Cognitive Psychology, 5(3), 322–337. doi:10.1016/0010-0285(73)90040-6.CrossRefGoogle Scholar
  17. Dunn, W., & Westman, K. (1997). The sensory profile: The performance of a national sample of children without disabilities. The American Journal of Occupational Therapy, 51(1), 25–34.CrossRefPubMedGoogle Scholar
  18. Falter, C. M., Grant, K. C. P., & Davis, G. (2010). Object-based attention benefits reveal selective abnormalities of visual integration in autism. Autism Research, 3(3), 128–136. doi:10.1002/aur.134.CrossRefPubMedGoogle Scholar
  19. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.CrossRefPubMedGoogle Scholar
  20. Heaton, P. (2003). Pitch memory, labeling and disembedding in autism. Journal of Child Psychology and Psychiatry, 44(4), 543–551.CrossRefPubMedGoogle Scholar
  21. Heaton, P. (2005). Interval and contour processing in autism. Journal of Autism and Developmental Disorders, 35(6), 787–793.CrossRefPubMedGoogle Scholar
  22. Jones, C., Happé, F., Baird, G., Simonoff, E., Marsden, A., Tregay, J., et al. (2009). Auditory discrimination and auditory sensory behaviours in autism spectrum disorders. Neuropsychologia, 47(13), 2850–2858.CrossRefPubMedGoogle Scholar
  23. Khalfa, S., Bruneau, N., Roge, B., Georgieff, N., Veuillet, E., Adrien, J., et al. (2004). Increased perception of loudness in autism. Hearing Research, 198(1–2), 87–92. doi:10.1016/j.heares.2004.07.006.CrossRefPubMedGoogle Scholar
  24. Laffaiteur, J. P., Casali, M., Gualbert, J. M., & Madeline, C. (2001). Étude comparative du WISC-III et du K. ABC. Psychologie & Education, 46, 115–131.Google Scholar
  25. Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19(3), 143–148. doi:10.1177/0963721410370295.CrossRefGoogle Scholar
  26. Lepistö, T., Kuitunen, A., Sussman, E., Saalasti, S., Jansson-Verkasalo, E., Nieminen-von Wendt, T., et al. (2009). Auditory stream segregation in children with Asperger syndrome. Biological Psychology, 82(3), 301–307. doi:10.1016/j.biopsycho.2009.09.004.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., Dilavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Heidelberg, Germany: Springer.Google Scholar
  28. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.CrossRefPubMedGoogle Scholar
  29. Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. London: Lawrence Erlbaum Associates.Google Scholar
  30. Molnar-Szakacs, I., & Heaton, P. (2012). Music: A unique window into the world of autism. Annals of the New York Academy of Sciences, 1252(1), 318–324. doi:10.1111/j.1749-6632.2012.06465.x.CrossRefPubMedGoogle Scholar
  31. Moore, B. C. J., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1591), 919–931. doi:10.1098/rstb. 2011.0355.CrossRefGoogle Scholar
  32. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.CrossRefPubMedGoogle Scholar
  33. Mottron, L., Peretz, I., & Menard, E. (2000). Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry, 41(8), 1057–1065.CrossRefPubMedGoogle Scholar
  34. O’Connor, K. (2012). Auditory processing in autism spectrum disorder: A review. Neuroscience and Biobehavioral Reviews, 36(2), 836–854. doi:10.1016/j.neubiorev.2011.11.008.CrossRefPubMedGoogle Scholar
  35. Remington, A., Swettenham, J., Campbell, R., & Coleman, M. (2009). Selective attention and perceptual load in autism spectrum disorder. Psychological Science, 20(11), 1388–1393.CrossRefPubMedGoogle Scholar
  36. Remington, A., Swettenham, J., & Lavie, N. (2012). Lightening the load: Perceptual load impairs visual detection in typical adults but not in autism. Journal of Abnormal Psychology, 121(2), 544–551. doi:10.1037/a0027670.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rose, M. M., & Moore, B. C. J. (2005). The relationship between stream segregation and frequency discrimination in normally hearing and hearing-impaired subjects. Hearing Research, 204(1–2), 16–28. doi:10.1016/j.heares.2004.12.004.CrossRefPubMedGoogle Scholar
  38. Russo, N., Zecker, S., Trommer, B., Chen, J., & Kraus, N. (2009). Effects of background noise on cortical encoding of speech in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(8), 1185–1196. doi:10.1007/s10803-009-0737-0.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Snyder, J. S., & Alain, C. (2007). Toward a neurophysiological theory of auditory stream segregation. Psychological Bulletin, 133(5), 780–799.CrossRefPubMedGoogle Scholar
  40. Sussman, E., Wong, R., Horváth, J., Winkler, I., & Wang, W. (2007). The development of the perceptual organization of sound by frequency separation in 5-11-year-old children. Hearing Research, 225(1–2), 117–127. doi:10.1016/j.heares.2006.12.013.CrossRefPubMedGoogle Scholar
  41. Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. The American Journal of Occupational Therapy, 61(2), 190–200. doi:10.5014/ajot.61.2.190.CrossRefPubMedGoogle Scholar
  42. Yago, E., Escera, C., Alho, K., & Giard, M.-H. (2001). Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. NeuroReport, 12(11), 2583–2587.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lucie Bouvet
    • 1
    • 2
  • Laurent Mottron
    • 3
  • Sylviane Valdois
    • 2
    • 4
  • Sophie Donnadieu
    • 2
    • 5
  1. 1.Laboratoire de Neurosciences Fonctionnelles et Pathologiques, Département de psychologieUniversité Lille 3Villeneuve d’Ascq CedexFrance
  2. 2.Laboratoire de Psychologie et Neurocognition (UMR CNRS 5105)GrenobleFrance
  3. 3.Clinique spécialisée de l’autisme, Hôpital Rivière-des-Prairies, CETEDUMUniversité de MontréalMontréalCanada
  4. 4.Centre National de la Recherche ScientifiqueParisFrance
  5. 5.Université de SavoieChambéryFrance

Personalised recommendations