Journal of Autism and Developmental Disorders

, Volume 44, Issue 4, pp 958–964 | Cite as

STX209 (Arbaclofen) for Autism Spectrum Disorders: An 8-Week Open-Label Study

  • Craig A. Erickson
  • Jeremy M. Veenstra-Vanderweele
  • Raun D. Melmed
  • James T. McCracken
  • Lawrence D. Ginsberg
  • Linmarie Sikich
  • Lawrence Scahill
  • Maryann Cherubini
  • Peter Zarevics
  • Karen Walton-Bowen
  • Randall L. Carpenter
  • Mark F. Bear
  • Paul P. Wang
  • Bryan H. King
Original Paper

Abstract

STX209 (arbaclofen), a selective GABA-B agonist, is hypothesized to modulate the balance of excitatory to inhibitory neurotransmission, and has shown preliminary evidence of benefit in fragile X syndrome. We evaluated its safety, tolerability, and efficacy in non-syndromic autism spectrum disorders, in an 8-week open-label trial enrolling 32 children and adolescents with either Autistic Disorder or Pervasive Developmental Disorder—Not Otherwise Specified, and a score ≥17 on the Aberrant Behavior Checklist (ABC)—Irritability subscale. STX209 was generally well-tolerated. The most common adverse events were agitation and irritability, which typically resolved without dose changes, and were often felt to represent spontaneous variation in underlying symptoms. Improvements were observed on several outcome measures in this exploratory trial, including the ABC-Irritability (the primary endpoint) and the Lethargy/Social Withdrawal subscales, the Social Responsiveness Scale, the CY-BOCS-PDD, and clinical global impression scales. Placebo-controlled study of STX209 is warranted.

Keywords

STX209 Arbaclofen Gamma-aminobutyric acid (GABA) Autism spectrum disorder Clinical trial 

References

  1. Aman, M. G., McDougle, C. J., Scahill, L., Handen, B., Arnold, L. E., Johnson, C., et al. (2009). Medication and parent training in children with pervasive developmental disorders and serious behavior problems: Results from a randomized clinical trial. Journal of the American Academy of Child and Adolescent Psychiatry, 48(12), 1143–1154.PubMedCrossRefGoogle Scholar
  2. Baudouin, S. J., Gaudias, J., Gerharz, S., Hatstatt, L., Zhou, K., Punnakkal, P., et al. (2012). Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science, 338(6103), 128–132.PubMedCrossRefGoogle Scholar
  3. Bear, M. F., Huber, K. M., & Warren, S. T. (2004). The mGluR theory of fragile X mental retardation. Trends Neuroscience, 27(7), 370–377.CrossRefGoogle Scholar
  4. Berry-Kravis, E. M., Hessl, D., Rathmell, B., Zarevics, P., Cherubini, M., Walton-Bowen, K., et al. (2012). Effects of STX209 (Arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: A randomized, controlled, phase 2 trial. Science translational medicine, 4(152), 152ra127.Google Scholar
  5. Centers for Disease Control. (2012). Prevalence of autism spectrum disorders–autism and developmental disabilities monitoring network, 14 sites, United States, 2008. Morbidity and mortality weekly report. Surveillance summaries, 61(3), 1–19.Google Scholar
  6. Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Thuras, P. D. (2009). Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum, 8(1), 64–69.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Gai, X., Xie, H. M., Perin, J. C., Takahashi, N., Murphy, K., Wenocur, A. S., et al. (2012). Rare structural variation of synapse and neurotransmission genes in autism. Molecular Psychiatry, 17(4), 402–411.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Gandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P., & Siegel, S. J. (2010). Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biological Psychiatry, 68(12), 1100–1106.PubMedCrossRefGoogle Scholar
  9. Geschwind, D. H. (2009). Advances in autism. Annual Review of Medicine, 60, 367–380.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hagerman, R., Hoem, G., & Hagerman, P. (2010). Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. Mol Autism, 1(1), 12.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Henderson, C., Wijetunge, L., Kinoshita, M. N., Shumway, M., Hammond, R. S., Postma, F. R., et al. (2012). Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Science translational medicine, 4(152), 152ra128.Google Scholar
  12. Huffman, L. C., Sutcliffe, T. L., Tanner, I. S., & Feldman, H. M. (2011). Management of symptoms in children with autism spectrum disorders: A comprehensive review of pharmacologic and complementary-alternative medicine treatments. Journal of Developmental and Behavioral Pediatrics, 32(1), 56–68.PubMedCrossRefGoogle Scholar
  13. Jahromi, L. B., Kasari, C. L., McCracken, J. T., Lee, L. S., Aman, M. G., McDougle, C. J., et al. (2009). Positive effects of methylphenidate on social communication and self-regulation in children with pervasive developmental disorders and hyperactivity. Journal of Autism and Developmental Disorders, 39(3), 395–404.PubMedCrossRefGoogle Scholar
  14. Kang, Y. H., Sun, B., Park, Y. S., Park, C. S., & Jin, Y. H. (2012). GABA(A) and GABA(B) receptors have opposite effects on synaptic glutamate release on the nucleus tractus solitarii neurons. Neuroscience, 209, 39–46.PubMedCrossRefGoogle Scholar
  15. Kelleher, R. J., 3rd, Geigenmuller, U., Hovhannisyan, H., Trautman, E., Pinard, R., Rathmell, B., et al. (2012). High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism. PLoS One, 7(4), e35003.Google Scholar
  16. Krueger, D. D., & Bear, M. F. (2011). Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annual Review of Medicine, 62, 411–429.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kumar, R. A., & Christian, S. L. (2009). Genetics of autism spectrum disorders. Current neurology and neuroscience reports, 9(3), 188–197.PubMedCrossRefGoogle Scholar
  18. McPheeters, M. L., Warren, Z., Sathe, N., Bruzek, J. L., Krishnaswami, S., Jerome, R. N., et al. (2011). A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics, 127(5), e1312–e1321.PubMedCrossRefGoogle Scholar
  19. Michalon, A., Sidorov, M., Ballard, T. M., Ozmen, L., Spooren, W., Wettstein, J. G., et al. (2012). Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron, 74(1), 49–56.PubMedCrossRefGoogle Scholar
  20. Oblak, A. L., Gibbs, T. T., & Blatt, G. J. (2010). Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. Journal of Neurochemistry, 114(5), 1414–1423.PubMedCentralPubMedGoogle Scholar
  21. Paluszkiewicz, S. M., Martin, B. S., & Huntsman, M. M. (2011). Fragile X syndrome: The GABAergic system and circuit dysfunction. Developmental Neuroscience, 33(5), 349–364.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Posey, D., Erickson, C., Stigler, K., Diener, J., Kieffer, E., Kohn, A., et al. (2009). A double-blind, placebo-controlled trial of N-acetylcysteine in children with autism spectrum disorders. Paper presented at the American College of Neuropsychopharmacology, 48th annual meeting, Hollywood, FL.Google Scholar
  23. Posey, D. J., Erickson, C. A., McDougle, C. J. (2008). Developing drugs for core social and communication impairment in autism. Child and adolescent psychiatric clinics of North America, 17(4), 787–801, viii–ix.Google Scholar
  24. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behavior, 2(5), 255–267.CrossRefGoogle Scholar
  25. Scahill, L., Aman, M. G., McDougle, C. J., McCracken, J. T., Tierney, E., Dziura, J., et al. (2006). A prospective open trial of guanfacine in children with pervasive developmental disorders. Journal of Child and Adolescent Psychopharmacology, 16(5), 589–598.PubMedCrossRefGoogle Scholar
  26. Scahill, L., Hallett, V., Aman, M. G., McDougle, C. J., Eugene Arnold, L., McCracken, J. T., et al. (2012). Brief report: Social disability in autism spectrum disorder: Results from research units on pediatric psychopharmacology (RUPP) autism network trials. Journal Autism Development Disorder, 43(3), 739–746.Google Scholar
  27. Silverman, J. L., Smith, D. G., Rizzo, S. J., Karras, M. N., Turner, S. M., Tolu, S. S., et al. (2012). Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Science translational medicine, 4(131), 131ra151.Google Scholar
  28. Skafidas, E., Testa, R., Zantomio, D., Chana, G., Everall, I. P., & Pantelis, C. (2012). Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Molecular Psychiatry. doi:10.1038/mp.2012.126.
  29. State, M. W. (2010). The genetics of child psychiatric disorders: Focus on autism and Tourette syndrome. Neuron, 68(2), 254–269.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Watson, C., Hoeft, F., Garrett, A. S., Hall, S. S., & Reiss, A. L. (2008). Aberrant brain activation during gaze processing in boys with fragile X syndrome. Archives of General Psychiatry, 65(11), 1315–1323.PubMedCrossRefGoogle Scholar
  31. Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J., et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477(7363), 171–178.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Craig A. Erickson
    • 1
  • Jeremy M. Veenstra-Vanderweele
    • 2
  • Raun D. Melmed
    • 3
  • James T. McCracken
    • 4
  • Lawrence D. Ginsberg
    • 5
  • Linmarie Sikich
    • 6
  • Lawrence Scahill
    • 7
  • Maryann Cherubini
    • 8
  • Peter Zarevics
    • 8
  • Karen Walton-Bowen
    • 8
  • Randall L. Carpenter
    • 8
  • Mark F. Bear
    • 9
  • Paul P. Wang
    • 8
  • Bryan H. King
    • 10
  1. 1.Division of Child and Adolescent PsychiatryCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of PsychiatryVanderbilt University School of MedicineNashvilleUSA
  3. 3.Southwest Autism Research and Resource CenterScottsdaleUSA
  4. 4.NPI-Semel InstituteUCLALos AngelesUSA
  5. 5.Red Oak Psychiatry AssociatesHoustonUSA
  6. 6.Department of PsychiatryUniversity of North Carolina at Chapel HillChapel HillUSA
  7. 7.Marcus Autism CenterEmory UniversityAtlantaUSA
  8. 8.Seaside Therapeutics, Inc.CambridgeUSA
  9. 9.Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA
  10. 10.Department of Psychiatry and Behavioral Sciences, Seattle Children’s HospitalUniversity of WashingtonSeattleUSA

Personalised recommendations