Journal of Autism and Developmental Disorders

, Volume 45, Issue 2, pp 292–297 | Cite as

Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

  • Christina R. Maxwell
  • Michele E. Villalobos
  • Robert T. Schultz
  • Beate Herpertz-Dahlmann
  • Kerstin Konrad
  • Gregor Kohls
Original Paper

Abstract

Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age and intelligence quotient matched typically developing controls. We found a decrease in resting gamma power at right lateral electrodes in ASD. We further explored associations between gamma and ASD severity as measured by the Social Responsiveness Scale (SRS) and found a negative correlation between SRS and gamma power. We believe that our findings give further support of gamma oscillations as a potential biomarker for ASD.

Keywords

Autism Gamma EEG SRS Resting state Laterality 

References

  1. Achenbach, T. M. (1991). Manual for the child behavior checklist/4–18 and 1991 profile. Burlington: VT University of Vermont.Google Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders—iv -tr (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  3. Constantino, J. N., Gruber, C. P., Davis, S., Hayes, S., Passanante, N., & Przybeck, T. (2004). The factor structure of autistic traits. Journal of Child Psychology and Psychiatry, 45, 719–726.PubMedCrossRefGoogle Scholar
  4. Cornew, L., Roberts, T. P., Blaskey, L., & Edgar, J. C. (2012). Resting-state oscillatory activity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42, 1884–1894. CrossRefGoogle Scholar
  5. Dawson, G., Klinger, L. G., Panagiotides, H., Lewy, A., & Castelloe, P. (1995). Subgroups of autistic children based on social behavior display distinct patterns of brain activity. Journal of Abnormal Child Psychology, 23, 569–583.PubMedCrossRefGoogle Scholar
  6. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.PubMedCrossRefGoogle Scholar
  7. Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., et al. (1995). Frontal activation asymmetry and social competence at four years of age. Child Development, 66, 1770–1784.PubMedCrossRefGoogle Scholar
  8. Gandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P., & Siegel, S. J. (2010). Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biological Psychiatry, 68, 1100–1106.PubMedCrossRefGoogle Scholar
  9. Gleissner, U., Von Ondarza, G., Freitag, H., & Karlmeier, A. (2003). Auswahl einer HAWIK-III-Kurzform fur Kinder und Jugendliche mit Epilepsie. Zeitschrift fur Neuropsychologie, 14, 3–11.CrossRefGoogle Scholar
  10. Gonzalez-Burgos, G., Hashimoto, T., & Lewis, D. A. (2010). Alterations of cortical GABA neurons and network oscillations in schizophrenia. Current Psychiatry Reports, 12, 335–344.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia. Schizophrenia Bulletin, 34, 944–961.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988.PubMedCrossRefGoogle Scholar
  13. Keren, A. S., Yuval-Greenberg, S., & Deouell, L. Y. (2010). Saccadic spike potentials in gamma-band EEG: Characterization, detection and suppression. Neuroimage, 49, 2248–2263.PubMedCrossRefGoogle Scholar
  14. Kohls, G., Peltzer, J., Schulte-Ruther, M., Kamp-Becker, I., Remschmidt, H., Herpertz-Dahlmann, B., et al. (2011). Atypical Brain Responses to Reward Cues in Autism as Revealed by Event-Related Potentials. Journal of Autism and Developmental Disorders, 41, 1523–1533.PubMedCrossRefGoogle Scholar
  15. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr, Leventhal, B. L., Dilavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedCrossRefGoogle Scholar
  16. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.PubMedCrossRefGoogle Scholar
  17. Magnee, M. J., De Gelder, B., Van Engeland, H., & Kemner, C. (2011). Multisensory integration and attention in autism spectrum disorder: Evidence from event-related potentials. PLoS ONE, 6, e24196.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Marco, E. J., Hinkley, L. B., Hill, S. S., & Nagarajan, S. S. (2011). Sensory processing in autism: A review of neurophysiologic findings. Pediatric Research, 69, 48R–54R.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Muller, M. M., Keil, A., Gruber, T., & Elbert, T. (1999). Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clinical Neurophysiology, 110, 1913–1920.PubMedCrossRefGoogle Scholar
  20. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  21. Rojas, D. C., Maharajh, K., Teale, P., & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8, 66.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Rojas, D. C., Teale, P. D., Maharajh, K., Kronberg, E., Youngpeter, K., Wilson, L. B., et al. (2011). Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder. Mol Autism, 2, 11.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav, 2, 255–267.PubMedCrossRefGoogle Scholar
  24. Rutter, M., Bailey, A., & Lord, C. (2003). Social Communication Questionnaire. Manual for the SCQ. Los Angeles, CA: Western Psychological Services.Google Scholar
  25. Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M., & Mohammadi, M. (2010). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36, 957–963.PubMedCrossRefGoogle Scholar
  26. Sheikhani, A., Behnam, H., Noroozian, M., Mohammadi, M. R., & Mohammadi, M. (2009). Abnormalities of quantitative electroencephalography in children with Asperger disorder in various conditions. Research in Autism Spectrum Disorders, 3, 538–546.CrossRefGoogle Scholar
  27. Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459, 698–702.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11, 100–113.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christina R. Maxwell
    • 1
  • Michele E. Villalobos
    • 1
  • Robert T. Schultz
    • 1
  • Beate Herpertz-Dahlmann
    • 2
    • 3
  • Kerstin Konrad
    • 2
    • 3
    • 4
    • 5
  • Gregor Kohls
    • 1
  1. 1.Center for Autism ResearchChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of Child and Adolescent Psychiatry and PsychotherapyRWTH Aachen UniversityAachenGermany
  3. 3.JARA Translational Brain MedicineAachenGermany
  4. 4.Child Neuropsychology Section, Department of Child and Adolescent Psychiatry and PsychotherapyRWTH Aachen UniversityAachenGermany
  5. 5.Cognitive Neurology SectionInstitute of Neuroscience and Medicine, Research Centre JülichJülichGermany

Personalised recommendations