Journal of Autism and Developmental Disorders

, Volume 43, Issue 12, pp 2903–2913 | Cite as

Functional Neuroimaging of Social and Nonsocial Cognitive Control in Autism

  • Antoinette Sabatino
  • Alison Rittenberg
  • Noah J. Sasson
  • Lauren Turner-Brown
  • James W. Bodfish
  • Gabriel S. Dichter
Original Paper


This study investigated cognitive control of social and nonsocial information in autism using functional magnetic resonance imaging. Individuals with autism spectrum disorders (ASDs) and a neurotypical control group completed an oddball target detection task where target stimuli were either faces or nonsocial objects previously shown to be related to circumscribed interests in autism. The ASD group demonstrated relatively increased activation to social targets in right insular cortex and in left superior frontal gyrus and relatively decreased activation to nonsocial targets related to circumscribed interests in multiple frontostriatal brain regions. Findings suggest that frontostriatal recruitment during cognitive control in ASD is contingent on stimulus type, with increased activation for social stimuli and decreased activation for nonsocial stimuli related to circumscribed interests.


Autism Functional magnetic resonance imaging; cognitive control Repetitive behaviors Frontostriatal 



This research was supported by R01 MH073402 (JWB and GSD), K23 MH081285 (GSD), and H325D070011 (AS). Assistance for this study was provided by the Participant Registry Core of the Carolina Institute for Developmental Disabilities (P30 HD03110). The authors thank Josh Bizzell, Chris Petty, Zoe Englander, and Todd Harshbarger for assistance with image analysis, MRI technologists Susan Music, Natalie Goutkin, and Luke Poole for assistance with data acquisition, and BIAC Director Dr. Allen Song for assistance with various aspects of this project. Finally, we gratefully acknowledge the participation of individuals with autism in this research.

Supplementary material

10803_2013_1837_MOESM1_ESM.pdf (51 kb)
Supplementary material 1 (PDF 51 kb)


  1. Agam, Y., Joseph, R. M., Barton, J. J., & Manoach, D. S. (2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. NeuroImage, 52(1), 336–347.PubMedCrossRefGoogle Scholar
  2. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17.PubMedCrossRefGoogle Scholar
  3. Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. NeuroImage, 20(2), 1052–1063.PubMedCrossRefGoogle Scholar
  4. Bodfish, J. W., Symons, F. W., & Lewis, M. H. (1999). The Repetitive Behavior Scale-Revised, Western Carolina Center Research Reports.Google Scholar
  5. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.PubMedCrossRefGoogle Scholar
  6. Buchsbaum, M. S., Buchsbaum, B. R., Hazlett, E. A., Haznedar, M. M., Newmark, R., Tang, C. Y., et al. (2007). Relative glucose metabolic rate higher in white matter in patients with schizophrenia. American Journal of Psychiatry, 164(7), 1072–1081.PubMedCrossRefGoogle Scholar
  7. Casey, B. J., Forman, S. D., Franzen, P., Berkowitz, A., Braver, T. S., Nystrom, L. E., et al. (2001). Sensitivity of prefrontal cortex to changes in target probability: A functional MRI study. Human Brain Mapping, 13(1), 26–33.PubMedCrossRefGoogle Scholar
  8. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.PubMedCrossRefGoogle Scholar
  9. Dichter, G. S. (2012). Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clinical Neuroscience, 14(3), 319–351.Google Scholar
  10. Dichter, G. S., & Belger, A. (2007). Social stimuli interfere with cognitive control in autism. NeuroImage, 35(3), 1219–1230.PubMedCrossRefGoogle Scholar
  11. Dichter, G. S., Felder, J. N., & Bodfish, J. W. (2009). Autism is characterized by dorsal anterior cingulate hyperactivation during social target detection. Social Cognitive and Affective Neuroscience, 4(3), 215–226.PubMedCrossRefGoogle Scholar
  12. Dichter, G. S., Felder, J. N., Green, S. R., Rittenberg, A. M., Sasson, N. J., & Bodfish, J. W. (2012a). Reward circuitry function in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 7, 160–172.PubMedCrossRefGoogle Scholar
  13. Dichter, G. S., Richey, J. A., Rittenberg, A. M., Sabatino, A., & Bodfish, J. W. (2012b). Reward circuitry function in autism during face anticipation and outcomes. Journal of Autism and Developmental Disorders, 42(2), 147–160.PubMedCrossRefGoogle Scholar
  14. Eckert, M. A., Menon, V., Walczak, A., Ahlstrom, J., Denslow, S., Horwitz, A., et al. (2009). At the heart of the ventral attention system: The right anterior insula. Human Brain Mapping, 30(8), 2530–2541.PubMedCrossRefGoogle Scholar
  15. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–479.PubMedCrossRefGoogle Scholar
  16. Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 74–82.PubMedCrossRefGoogle Scholar
  17. Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8(1), 26–32.PubMedCrossRefGoogle Scholar
  18. Honey, E., McConachie, H., Randle, V., Shearer, H., & Couteur, A. S. (2006). One-year change in repetitive behaviours in young children with communication disorders including autism. Journal of Autism and Developmental Disorders, 38(8), 1439–1450.Google Scholar
  19. Huettel, S. A. (2004). Non-linearities in the blood-oxygenation-level dependent (BOLD) response measured by functional magnetic resonance imaging (fMRI). In Conf Proc IEEE Eng Med Biol Soc, 6, 4413–4416.Google Scholar
  20. Huettel, S. A., & McCarthy, G. (2004). What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy. Neuropsychologia, 42(3), 379–386.PubMedCrossRefGoogle Scholar
  21. Huettel, S. A., Misiurek, J., Jurkowski, A. J., & McCarthy, G. (2004). Dynamic and strategic aspects of executive processing. Brain Research, 1000(1–2), 78–84.PubMedCrossRefGoogle Scholar
  22. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.PubMedCrossRefGoogle Scholar
  23. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.PubMedCrossRefGoogle Scholar
  24. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.Google Scholar
  25. Kirino, E., Belger, A., Goldman-Rakic, P., & McCarthy, G. (2000). Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: An event-related functional magnetic resonance imaging study. Journal of Neuroscience, 20(17), 6612–6618.PubMedGoogle Scholar
  26. Kleinhans, N. M., Richards, T., Weaver, K., Johnson, L. C., Greenson, J., Dawson, G., et al. (2010). Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia, 48(12), 3665–3670.PubMedCrossRefGoogle Scholar
  27. Klin, A., Danovitch, J. H., Merz, A. B., & Volkmar, F. (2007). Circumscribed interests in higher functioning individuals with austim spectrum disorders: An exploratory study. Research and Practice for Persons with Severe Disabilities, 32(2), 89–100.CrossRefGoogle Scholar
  28. Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122(Pt 5), 981–991.PubMedCrossRefGoogle Scholar
  29. Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8(1), e53894.PubMedCrossRefGoogle Scholar
  30. Lam, K. S., & Aman, M. G. (2007). The Repetitive Behavior Scale-Revised: Independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(5), 855–866.PubMedCrossRefGoogle Scholar
  31. Lam, K. S., Bodfish, J. W., & Piven, J. (2008). Evidence for three subtypes of repetitive behavior in autism that differ in familiality and association with other symptoms. Journal of Child Psychology and Psychiatry, 49(11), 1193–1200.PubMedCrossRefGoogle Scholar
  32. Lezak, M. D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.Google Scholar
  33. Lieberman, M. D., & Cunningham, W. A. (2009). Type I and Type II error concerns in fMRI research: Re-balancing the scale. Social Cognitive and Affective Neuroscience, 4(4), 423–428.PubMedCrossRefGoogle Scholar
  34. Lopez, B. R., Lincoln, A. J., Ozonoff, S., & Lai, Z. (2005). Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder. Journal of Autism and Developmental Disorders, 35(4), 445–460.PubMedCrossRefGoogle Scholar
  35. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedCrossRefGoogle Scholar
  36. MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.PubMedCrossRefGoogle Scholar
  37. Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophrenia Research, 60(2–3), 285–298.PubMedCrossRefGoogle Scholar
  38. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London, 356(1412), 1293–1322.PubMedCrossRefGoogle Scholar
  39. Melcher, T., Falkai, P., & Gruber, O. (2008). Functional brain abnormalities in psychiatric disorders: Neural mechanisms to detect and resolve cognitive conflict and interference. Brain Research Reviews, 59(1), 96–124.PubMedCrossRefGoogle Scholar
  40. Milham, M. P., Banich, M. T., Claus, E. D., & Cohen, N. J. (2003). Practice-related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. NeuroImage, 18(2), 483–493.PubMedCrossRefGoogle Scholar
  41. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.PubMedCrossRefGoogle Scholar
  42. Ozonoff, S. (1995). Reliability and validity of the Wisconsin Card Sorting Test in studies of autism. Neuropsychology, 9(4), 491–500.CrossRefGoogle Scholar
  43. Padmala, S., & Pessoa, L. (2010). Interactions between cognition and motivation during response inhibition. Neuropsychologia, 48(2), 558–565.PubMedCrossRefGoogle Scholar
  44. Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 3419–3432.PubMedCrossRefGoogle Scholar
  45. Richey, J. A., Rittenberg, A., Hughes, L., Damiano, C. R., Sabatino, A., Miller, S., et al. (2013). Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nss146.
  46. Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., & Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12(1), 142–162.PubMedCrossRefGoogle Scholar
  47. Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., et al. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage, 13(2), 250–261.PubMedCrossRefGoogle Scholar
  48. Rushworth, M. F., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8(9), 410–417.PubMedCrossRefGoogle Scholar
  49. Sasson, N. J., Dichter, G. S., & Bodfish, J. W. (2012). Affective responses by adults with autism are reduced to social images but elevated to images related to circumscribed interests. PLoS One, 7(8), e42457.PubMedCrossRefGoogle Scholar
  50. Sasson, N. J., Elison, J. T., Turner-Brown, L. M., Dichter, G. S., & Bodfish, J. W. (2011). Brief report: Circumscribed attention in young children with autism. Journal of Autism and Developmental Disorders, 41(2), 242–247.PubMedCrossRefGoogle Scholar
  51. Sasson, N. J., Turner-Brown, L., Holtzclaw, T., Lam, K. S., & Bodfish, J. (2008). Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Research, 1, 31–42.PubMedCrossRefGoogle Scholar
  52. Scahill, L., McDougle, C. J., Williams, S. K., Dimitropoulos, A., Aman, M. G., McCracken, J. T., et al. (2006). Children's yale-brown obsessive compulsive scale modified for pervasive developmental disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 45(9), 1114–1123.PubMedCrossRefGoogle Scholar
  53. Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59(1), 7–16.PubMedCrossRefGoogle Scholar
  54. Shafritz, K. M., Dichter, G. S., Baranek, G. T., & Belger, A. (2008). The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biological Psychiatry, 63(10), 974–980.PubMedCrossRefGoogle Scholar
  55. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.PubMedCrossRefGoogle Scholar
  56. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219.PubMedCrossRefGoogle Scholar
  57. Solomon, M., Ozonoff, S., Ursu, S., Ravizza, S., Cummings, N., Ly, S., et al. (2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia, 47(12), 2515–2526.Google Scholar
  58. South, M., Ozonoff, S., & McMahon, W. M. (2005). Repetitive behavior profiles in Asperger syndrome and high-functioning autism. Journal of Autism and Developmental Disorders, 35(2), 145–158.PubMedCrossRefGoogle Scholar
  59. South, M., Ozonoff, S., & McMahon, W. M. (2007). The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum. Autism, 11(5), 437–451.PubMedCrossRefGoogle Scholar
  60. Tadevosyan-Leyfer, O., Dowd, M., Mankoski, R., Winklosky, B., Putnam, S., McGrath, L., et al. (2003). A principal components analysis of the Autism Diagnostic Interview-Revised. Journal of the American Academy of Child and Adolescent Psychiatry, 42(7), 864–872.PubMedCrossRefGoogle Scholar
  61. Thakkar, K. N., Polli, F. E., Joseph, R. M., Tuch, D. S., Hadjikhani, N., Barton, J. J., et al. (2008). Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain, 131(Pt 9), 2464–2478.PubMedCrossRefGoogle Scholar
  62. Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., et al. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242–249.PubMedCrossRefGoogle Scholar
  63. Turner-Brown, L. M., Lam, K. S., Holtzclaw, T. N., Dichter, G. S., & Bodfish, J. W. (2011). Phenomenology and measurement of circumscribed interests in autism spectrum disorders. Autism, 15(4), 437–456.PubMedCrossRefGoogle Scholar
  64. Voyvodic, J. T. (1999). Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. NeuroImage, 10(2), 91–106.PubMedCrossRefGoogle Scholar
  65. Wagner, G., Sinsel, E., Sobanski, T., Kohler, S., Marinou, V., Mentzel, H. J., et al. (2006). Cortical inefficiency in patients with unipolar depression: An event-related FMRI study with the Stroop task. Biological Psychiatry, 59(10), 958–965.PubMedCrossRefGoogle Scholar
  66. Ward, B. D. (2000). Simultaneous inference for fMRI data. Medical College of Wisconsin, Milwaukee: Biophysics Research Institute.Google Scholar
  67. Weschler, D. (1999). Weschler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: Harcourt Assessment.Google Scholar
  68. Woodward, T. S., Metzak, P. D., Meier, B., & Holroyd, C. B. (2008). Anterior cingulate cortex signals the requirement to break inertia when switching tasks: A study of the bivalency effect. NeuroImage, 40(3), 1311–1318.PubMedCrossRefGoogle Scholar
  69. Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage, 14(6), 1370–1386.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Antoinette Sabatino
    • 1
    • 2
  • Alison Rittenberg
    • 2
  • Noah J. Sasson
    • 3
  • Lauren Turner-Brown
    • 2
    • 5
  • James W. Bodfish
    • 4
  • Gabriel S. Dichter
    • 1
    • 2
    • 5
    • 6
  1. 1.Department of PsychologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Carolina Institute for Developmental DisabilitiesUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA
  4. 4.Departments of Hearing and Speech Sciences and PsychiatryVanderbilt UniversityNashvilleUSA
  5. 5.Department of PsychiatryUniversity of North Carolina at Chapel HillChapel HillUSA
  6. 6.Duke-UNC Brain Imaging and Analysis CenterDurhamUSA

Personalised recommendations