Journal of Autism and Developmental Disorders

, Volume 43, Issue 12, pp 2793–2806 | Cite as

Grasping Motor Impairments in Autism: Not Action Planning but Movement Execution is Deficient

  • Astrid M. B. Stoit
  • Hein T. van SchieEmail author
  • Dorine I. E. Slaats-Willemse
  • Jan K. Buitelaar
Original Paper


Different views on the origin of deficits in action chaining in autism spectrum disorders (ASD) have been posited, ranging from functional impairments in action planning to internal models supporting motor control. Thirty-one children and adolescents with ASD and twenty-nine matched controls participated in a two-choice reach-to-grasp paradigm wherein participants received cueing information indicating either the object location or the required manner of grasping. A similar advantage for location cueing over grip cueing was found in both groups. Both accuracy and reaction times of the ASD group were indistinguishable from the control group. In contrast, movement times of the ASD group were significantly delayed in comparison with controls. These findings suggest that movement execution rather than action planning is deficient in ASD, and that deficits in action chaining derive from impairments in internal action models supporting action execution.


Autism Motor deficit Action chaining Feedforward model Action planning Movement execution 



This research was supported by the EU-Project “Joint Action Science and Technology” (IST-FP6-003747). We thank Pascal de Water, Norbert Hermesdorf and Kees Rap for their technical assistance. We thank Monique van den Berg and Madelon Riem for their help with collecting the data.


  1. Achenbach, T. M. (1991). Manual for the child behavior checklist/4-18 and 1991 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders, fourth edition, text revision. Washington, DC: American Psychiatric Association.Google Scholar
  3. Bachevalier, J., & Loveland, K. A. (2006). The orbitofrontal-amygdala circuit and self-regulation of social-emotional behavior in autism. Neuroscience and Biobehavioral Reviews, 30(1), 97–117.PubMedGoogle Scholar
  4. Baranek, G. T. (1999). Autism during infancy: A retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age. Journal of Autism and Developmental Disorders, 29, 213–224.PubMedGoogle Scholar
  5. Barnea-Goraly, N., Lotspeich, L. J., & Reiss, A. L. (2010). Similar white matter aberrations in children with autism and their unaffected siblings: A diffusion tensor imaging study using tract-based spatial statistics. Archives of General Psychiatry, 67(10), 1052–1060.PubMedGoogle Scholar
  6. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. Journal of Neuroscience, 24(42), 9228–9231.PubMedGoogle Scholar
  7. Bernier, R., Dawson, G., Webb, S., & Murias, M. (2007). EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain and Cognition, 64(3), 228–237.PubMedGoogle Scholar
  8. Bhat, A., Galloway, J., & Landa, R. (2012). Relation between early motor delay and later communication delay in infants at risk for autism. Infant Behavior and Development, 35(4), 838–846.PubMedGoogle Scholar
  9. Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings of the Royal Society B: Biological Sciences, 274(1628), 3027–3031.PubMedGoogle Scholar
  10. Boria, S., Fabbri-Destro, M., Cattaneo, L., Sparaci, L., Sinigaglia, C., Santelli, E., et al. (2009). Intention understanding in autism. PLoS ONE, 4(5), e5596.PubMedGoogle Scholar
  11. Brisson, J., Warreyn, P., Serres, J., Foussier, S., & Adrien-Louis, J. (2012). Motor anticipation failure in infants with autism: A retrospective analysis of feeding situations. Autism, 16(4), 420–429.PubMedGoogle Scholar
  12. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14(2), 209–224.PubMedGoogle Scholar
  13. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., et al. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323–334.PubMedGoogle Scholar
  14. Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., Cossu, G., et al. (2007). Impairment of actions chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences of the United States of America, 104, 17825–17830.PubMedGoogle Scholar
  15. Chartrand, T. L., & van Baaren, R. (2009). Human mimicry. Advances in Experimental Social Psychology, 41, 219–274.Google Scholar
  16. Constantino, J. N., & Gruber, C. P. (2005). The Social Responsiveness Scale (SRS) manual. Los Angeles: Western Psychological Services.Google Scholar
  17. Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J. A., Kennedy, D. P., et al. (2007). Mapping early brain development in autism. Neuron, 56(2), 399–413.PubMedGoogle Scholar
  18. Danev, S. G., de Winter, C. R., & Wartna, G. F. (1971). On the relation between reaction and motion time in a choice reaction task. Acta Psychologica, 35(3), 188–197.Google Scholar
  19. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.PubMedGoogle Scholar
  20. De Sonneville, L. (1999). Amsterdam Neuro-psychological Tasks: A computer-aided assessment program. In B. P. L. M. den Brinker, P. J. Beek, A. N. Brand, S. J. Maarse, & L. J. M. Mulder (Eds.), Cognitive ergonomics, clinical assessment and computer-assisted learning (pp. 187–203). Lisse: Swets.Google Scholar
  21. Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. J. (2010). Normal movement selectivity in autism. Neuron, 66(3), 461–469.PubMedGoogle Scholar
  22. Dziuk, M. A., Larson, J. C. G., Apostu, A., Mahone, E. M., Denckla, M. B., & Mostofsky, S. H. (2007). Dyspraxia in autism: Association with motor, social, and communicative deficits. Developmental Medicine and Child Neurology, 49, 734–739.PubMedGoogle Scholar
  23. Fabbri-Destro, M., Cattaneo, L., Boria, S., & Rizzolatti, G. (2009). Planning actions in autism. Experimental Brain Research, 192, 521–525.Google Scholar
  24. Fan, Y.-T., Decety, J., Yang, C.-Y., Liu, J.-L., & Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 51(9), 981–988.PubMedGoogle Scholar
  25. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667.PubMedGoogle Scholar
  26. Forti, S., Valli, A., Perego, P., Nobile, M., Crippa, A., & Molteni, M. (2011). Motor planning and control in autism. A kinematic analysis of preschool children. Research in Autism Spectrum Disorders, 5(2), 834–842.Google Scholar
  27. Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., Reith, W., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 1480–1494.PubMedGoogle Scholar
  28. Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19(6), 1239–1255.PubMedGoogle Scholar
  29. Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.PubMedGoogle Scholar
  30. Ghaziuddin, M., & Butler, E. (1998). Clumsiness in autism and Asperger syndrome: A further report. Journal of Intellectual Disability Research, 42, 43–48.PubMedGoogle Scholar
  31. Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control, 10, 244–264.PubMedGoogle Scholar
  32. Glazebrook, C. M., Elliott, D., & Szatmari, P. (2008). How do individuals with autism plan their movements? Journal of Autism and Developmental Disorders, 38, 114–126.PubMedGoogle Scholar
  33. Gowen, E., Stanley, J., & Miall, R. C. (2008). Movement interference in autism-spectrum disorder. Neuropsychologia, 46(4), 1060–1068.PubMedGoogle Scholar
  34. Grafton, S. T., & Hamilton, A. F. D. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26, 590–616.PubMedGoogle Scholar
  35. Green, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., et al. (2009). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine and Child Neurology, 51, 311–316.PubMedGoogle Scholar
  36. Greimel, E., Schulte-Ruether, M., Kircher, T., Kamp-Becker, I., Remschmidt, H., Fink, G. R., et al. (2010). Neural mechanisms of empathy in adolescents with autism spectrum disorder and their fathers. Neuroimage, 49(1), 1055–1065.PubMedGoogle Scholar
  37. Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16, 1276–1282.PubMedGoogle Scholar
  38. Hamilton, A. F. C. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61(1), 101–115.Google Scholar
  39. Hamilton, A. F. C. (2009). Research review: Goals, intentions and mental states: Challenges for theories of autism. Journal of Child Psychology and Psychiatry, 50(8), 881–892.PubMedGoogle Scholar
  40. Hamilton, A. F. D., Brindley, R. M., & Frith, U. (2007). Imitation and action understanding in autistic spectrum disorders: How valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia, 45(8), 1859–1868.PubMedGoogle Scholar
  41. Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.PubMedGoogle Scholar
  42. Haswell, C. C., Izawa, J., Dowell, L. R., Mostofsky, S. H., & Shadmehr, R. (2009). Representation of internal models of action in the autistic brain. Nature Neuroscience, 12(8), 970–972.PubMedGoogle Scholar
  43. Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8(1), 26–32.PubMedGoogle Scholar
  44. Hobson, R. P., & Hobson, J. A. (2008). Dissociable aspects of imitation: A study in autism. Journal of Experimental Child Psychology, 101(3), 170–185.PubMedGoogle Scholar
  45. Hobson, R. P., & Lee, A. (1999). Imitation and identification in autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40(4), 649–659.Google Scholar
  46. Hughes, C. (1996). Brief report: Planning problems in autism at the level of motor control. Journal of Autism and Developmental Disorders, 26, 99–107.PubMedGoogle Scholar
  47. Hughes, C., & Russell, J. (1993). Autistic children’s difficulty with mental disengagement from an object: Its implications for theories of autism. Developmental Psychology, 29, 498–510.Google Scholar
  48. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15, 632–637.PubMedGoogle Scholar
  49. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942–951.PubMedGoogle Scholar
  50. Kaufman, A. S., Kaufman, J. C., Balgopal, R., & McLean, J. E. (1996). Comparison of three WISC-III short forms: Weighing psychometric, clinical, and practical factors. Journal of Clinical Child Psychology, 25(1), 97–105.Google Scholar
  51. Kenworthy, L., Yerys, B. E., Anthony, L. G., & Wallace, G. L. (2008). Understanding executive control in autism spectrum disorders in the lab and in the real world. Neuropsychology Review, 18(4), 320–338.PubMedGoogle Scholar
  52. Leary, M. R., & Hill, D. A. (1996). Moving on: Autism and movement disturbance. Mental Retardation, 34, 39–53.PubMedGoogle Scholar
  53. Leighton, J., Bird, G., Charman, T., & Heyes, C. (2008). Weak imitative performance is not due to a functional ‘mirroring’ deficit in adults with Autism Spectrum Disorders. Neuropsychologia, 46(4), 1041–1049.PubMedGoogle Scholar
  54. Leonard, J. A. (1959). Tactual choice reactions. Quarterly Journal of Experimental Psychology, 11(2), 76–83.Google Scholar
  55. Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech-perception revised. Cognition, 21, 1–36.PubMedGoogle Scholar
  56. Lord, C., Rutter, M., Dilavore, P., & Riso, S. (2001). Autism diagnostic observation schedule (ADOS) manual. Los Angeles, CA: Western Psychological Services.Google Scholar
  57. Luteijn, E. F., Minderaa, R., & Jackson, S. (2002). Vragenlijst voor Inventarisatie van Sociaal gedrag bij Kinderen (VISK), handleiding. Lisse: Swets.Google Scholar
  58. Mari, M., Castiello, U., Marks, D., Marraffa, C., & Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 358, 393–403.Google Scholar
  59. Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68(1), 35–40.PubMedGoogle Scholar
  60. McIntosh, D. N., Reichmann-Decker, A., Winkielman, P., & Wilbarger, J. L. (2006). When the social mirror breaks: Deficits in automatic, but not voluntary, mimicry of emotional facial expressions in autism. Developmental Science, 9, 295–302.PubMedGoogle Scholar
  61. Miall, R. C. (2003). Connecting mirror neurons and forward models. NeuroReport, 14(17), 2135–2137.PubMedGoogle Scholar
  62. Ming, X., Brimacombe, M., & Wagner, G. C. (2007). Prevalence of motor impairment in autism spectrum disorders. Brain and Development, 29(9), 565–570.PubMedGoogle Scholar
  63. Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism—Cortex, connectivity, and neuronal organization. Archives of Neurology, 64(7), 945–950.PubMedGoogle Scholar
  64. Mostofsky, S. H., & Ewen, J. B. (2011). Altered connectivity and action model formation in autism is autism. Neuroscientist, 17(4), 437–448.PubMedGoogle Scholar
  65. Mundy, P. (2003). Annotation: The neural basis of social impairments in autism: The role of the dorsal medial-frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44(6), 793–809.Google Scholar
  66. Nazarali, N., Glazebrook, C. M., & Elliott, D. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders, 39(10), 1401–1411.PubMedGoogle Scholar
  67. Nishitani, N., Avikainen, S., & Hari, R. (2004). Abnormal imitation-related cortical activation sequences in Asperger’s syndrome. Annals of Neurology, 55, 558–562.PubMedGoogle Scholar
  68. Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24, 190–198.PubMedGoogle Scholar
  69. Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46(5), 1558–1565.PubMedGoogle Scholar
  70. Ozonoff, S., & Strayer, D. L. (2001). Further evidence of intact working memory in autism. Journal of Autism and Developmental Disorders, 31(3), 257–263.PubMedGoogle Scholar
  71. Pardo, C. A., & Eberhart, C. G. (2007). The neurobiology of autism. Brain Pathology, 17(4), 434–447.PubMedGoogle Scholar
  72. Paulus, M., Hunnius, S., Vissers, M., & Bekkering, H. (2011). Bridging the gap between the other and me: The functional role of motor resonance and action effects in infants’ imitation. Developmental Science, 14, 901–910.PubMedGoogle Scholar
  73. Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37(1), 51–87.PubMedGoogle Scholar
  74. Perkins, T., Stokes, M., McGillivray, J., & Bittar, R. (2010). Mirror neuron dysfunction in autism spectrum disorders. Journal of Clinical Neuroscience, 17(10), 1239–1243.PubMedGoogle Scholar
  75. Polleux, F., & Lauder, J. M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10(4), 303–317.PubMedGoogle Scholar
  76. Raymaekers, R., Wiersema, J. R., & Roeyers, H. (2009). EEG study of the mirror neuron system in children with high functioning autism. Brain Research, 1304, 113–121.Google Scholar
  77. Rinehart, N. J., Bellgrove, M. A., Tonge, B. J., Brereton, A. V., Howells-Rankin, D., & Bradshaw, J. L. (2006a). An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: Further evidence for a motor planning deficit. Journal of Autism and Developmental Disorders, 36, 757–767.PubMedGoogle Scholar
  78. Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. J. (2001). Movement preparation in high-functioning autism and Asperger disorder: A serial choice reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders, 31, 79–88.PubMedGoogle Scholar
  79. Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., Iansek, R., Enticott, P. G., & Johnson, K. A. (2006b). Movement-related potentials in high-functioning autism and Asperger’s disorder. Developmental Medicine and Child Neurology, 48(4), 272–277.PubMedGoogle Scholar
  80. Rizzolatti, G., & Fabbri-Destro, M. (2010). Mirror neurons: From discovery to autism. Experimental Brain Research, 200, 223–237.Google Scholar
  81. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror neurons and their clinical relevance. Nature Clinical Practice Neurology, 5, 24–34.PubMedGoogle Scholar
  82. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.PubMedGoogle Scholar
  83. Robbins, T. W., James, M., Owen, A., Sahakian, B., McInnes, L., & Rabbitt, P. (1994). Cambridge neuropsychological test automated battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia and Geriatric Cognitive Disorders, 5(5), 266–281.Google Scholar
  84. Rogers, S., & Williams, J. (2006). Imitation in autism: Findings and controversies. In S. J. Rogers & J. H. G. Williams (Eds.), Imitation and the social mind: Autism and typical development (pp. 277–309). New York: The Guilford Press.Google Scholar
  85. Rosenbaum, D. A., & Jorgensen, M. J. (1992). Planning macroscopic aspects of manual control. Human Movement Science, 11, 61–69.Google Scholar
  86. Rutherford, M. D., & Rogers, S. J. (2003). Cognitive underpinnings of pretend play in autism. Journal of Autism and Developmental Disorders, 33(3), 289–302.PubMedGoogle Scholar
  87. Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interview-revised. Los Angeles, CA: Western Psychological Services.Google Scholar
  88. Schmitz, C., Martineau, J., Barthelemy, C., & Assaiante, C. (2003). Motor control and children with autism: Deficit of anticipatory function? Neuroscience Letters, 348, 17–20.PubMedGoogle Scholar
  89. Schurink, J., Hartman, E., Scherder, E. J. A., Houwen, S., & Visscher, C. (2012). Relationship between motor and executive functioning in school-age children with pervasive developmental disorder not otherwise specified. Research in Autism Spectrum Disorders, 6(2), 726–732.Google Scholar
  90. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10, 70–76.PubMedGoogle Scholar
  91. Sebanz, N., Knoblich, G., Stumpf, L., & Prinz, W. (2005). Far from action-blind: Representation of others’ actions in individuals with autism. Cognitive Neuropsychology, 22(3–4), 433–454.PubMedGoogle Scholar
  92. Smith, I. M., & Bryson, S. E. (1994). Imitation and action in autism: A critical review. Psychological Bulletin, 116, 259–273.PubMedGoogle Scholar
  93. Southgate, V., & Hamilton, A. F. C. (2008). Unbroken mirrors: Challenging a theory of autism. Trends in Cognitive Sciences, 12(6), 225–229.PubMedGoogle Scholar
  94. Stoit, A. M. B., van Schie, H. T., Riem, M., Meulenbroek, R. G. J., Newman-Norlund, R. D., Slaats-Willemse, D. I. E., et al. (2011). Internal model deficits impair joint action in children and adolescents with autism spectrum disorders. Research in Autism Spectrum Disorders, 5(4), 1526–1537.Google Scholar
  95. Szatmari, P., Tuff, L., Finlayson, A. J., & Bartolucci, G. (1990). Aspergers syndrome and autism: Neurocognitive aspects. Journal of the American Academy of Child and Adolescent Psychiatry, 29, 130–136.PubMedGoogle Scholar
  96. Theoret, H., Halligan, E., Kobayashi, M., Fregni, F., Tager-Flusberg, H., & Pascual-Leone, A. (2005). Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Current Biology, 15, R84–R85.PubMedGoogle Scholar
  97. van der Helden, J., van Schie, H. T., & Rombouts, C. (2010). Observational learning of new movement sequences is reflected in fronto-parietal coherence. PLoS ONE, 5(12), e14482.PubMedGoogle Scholar
  98. van Elk, M., van Schie, H. T., & Bekkering, H. (2009a). Action semantic knowledge about objects is supported by functional motor activation. Journal of Experimental Psychology-Human Perception and Performance, 35, 1118–1128.PubMedGoogle Scholar
  99. van Elk, M., van Schie, H. T., & Bekkering, H. (2009b). Short-term action intentions overrule long-term semantic knowledge. Cognition, 111, 72–83.PubMedGoogle Scholar
  100. van Elk, M., van Schie, H. T., Lindemann, O., & Bekkering, H. (2007). Using conceptual knowledge in action and language. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Attention and performance XXII: Sensorimotor foundations of higher cognition (pp. 575–599). Oxford: Oxford University Press.Google Scholar
  101. van Schie, H. T., & Bekkering, H. (2007). Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials. Brain Research, 1148, 183–197.PubMedGoogle Scholar
  102. Wechsler, D. (1991). The Wechsler intelligence scale for children – (3rd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
  103. Wechsler, D. (1997). Wechsler adult intelligence scale (3rd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
  104. Williams, J. H. G., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44(4), 610–621.PubMedGoogle Scholar
  105. Williams, J. H. G., Whiten, A., & Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders, 34(3), 285–299.PubMedGoogle Scholar
  106. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729–R732.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Astrid M. B. Stoit
    • 1
  • Hein T. van Schie
    • 2
    Email author
  • Dorine I. E. Slaats-Willemse
    • 3
  • Jan K. Buitelaar
    • 3
    • 4
  1. 1.Karakter Child and Adolescent PsychiatryZwolleThe Netherlands
  2. 2.Behavioural Science InstituteRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Karakter Child and Adolescent PsychiatryUniversity CentreNijmegenThe Netherlands
  4. 4.Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations