Journal of Autism and Developmental Disorders

, Volume 43, Issue 10, pp 2312–2328 | Cite as

Impaired Timing and Frequency Discrimination in High-functioning Autism Spectrum Disorders

  • Anjali BhataraEmail author
  • Talin Babikian
  • Elizabeth Laugeson
  • Raffi Tachdjian
  • Yvonne S. Sininger
Original Paper


Individuals with autism spectrum disorders (ASD) frequently demonstrate preserved or enhanced frequency perception but impaired timing perception. The present study investigated the processing of spectral and temporal information in 12 adolescents with ASD and 15 age-matched controls. Participants completed two psychoacoustic tasks: one determined frequency difference limens, and the other determined gap detection thresholds. Results showed impaired frequency discrimination at the highest standard frequency in the ASD group but no overall difference between groups. However, when groups were defined by auditory hyper-sensitivity, a group difference arose. For the gap detection task, the ASD group demonstrated elevated thresholds. This supports previous research demonstrating a deficit in ASD in temporal perception and suggests a connection between hyper-sensitivity and frequency discrimination abilities.


Auditory perception Psychophysics Hyper-sensitivity Asperger syndrome High-functioning autism 



Preparation of this manuscript was supported by a postdoctoral fellowship from the American Association of University Women to AB, as well as funds from the The Help Group—UCLA Autism Research Alliance and the Children’s Music Fund. We thank Elias Ballat and Sophie Kaye for assistance with testing and to all of the participants and their families for their time and effort.


  1. Agus, T. R., Akeroyd, M. A., Gatehouse, S., & Warden, D. (2009). Informational masking in young and elderly listeners for speech masked by simultaneous speech and noise. The Journal of the Acoustical Society of America, 126(4), 1926.PubMedCrossRefGoogle Scholar
  2. Alcántara, J. I., Cope, T. E., Cope, W., & Weisblatt, E. J. (2012). Auditory temporal-envelope processing in high-functioning children with Autism Spectrum Disorder. Neuropsychologia, 50, 1235–1251.PubMedCrossRefGoogle Scholar
  3. Alcántara, J. I., Weisblatt, E. J., Moore, B. C. J., & Bolton, P. F. (2004). Speech perception in high-functioning subjects with autism or Asperger’s syndrome. Journal of Child Psychology and Psychiatry, 45, 1107–1114.PubMedCrossRefGoogle Scholar
  4. Allman, M. J., & Meck, W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135(Pt 3), 656–677.PubMedCrossRefGoogle Scholar
  5. Altgassen, M., Kliegel, M., & Williams, T. I. (2005). Pitch perception in children with autistic spectrum disorders. British Journal of Developmental Psychology, 23(4), 543–558.PubMedCrossRefGoogle Scholar
  6. American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: Author.Google Scholar
  7. Anderson, S., Skoe, E., Chandrasekaran, B., & Kraus, N. (2010). Neural timing is linked to speech perception in noise. Journal of Neuroscience, 30(14), 4922.PubMedCrossRefGoogle Scholar
  8. Auyeung, B., Baron-Cohen, S., Wheelwright, S., & Allison, C. (2008). The autism spectrum quotient: Children’s version (AQ-child). Journal of Autism and Developmental Disorders, 38(7), 1230–1240.PubMedCrossRefGoogle Scholar
  9. Baranek, G. T., Boyd, B. A., Poe, M., David, F., & Watson, L. (2007). Hyperresponsive sensory patterns in young children with autism, developmental delay, and typical development. American Journal of Mental Retardation, 112(4), 233–245.PubMedCrossRefGoogle Scholar
  10. Baranek, G. T., David, F., Poe, M., Stone, W. L., & Watson, L. (2006). Sensory experiences questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. Journal of Child Psychology and Psychiatry, 47(6), 591–601.PubMedCrossRefGoogle Scholar
  11. Baron-Cohen, S., Hoekstra, R., Knickmeyer, R., & Wheelwright, S. (2006). The autism- spectrum quotient (AQ)—adolescent version. Journal of Autism and Developmental Disorders, 36(3), 343–350.PubMedCrossRefGoogle Scholar
  12. Bernstein, J. G. W., & Oxenham, A. J. (2006). The relationship between frequency selectivity and pitch discrimination: Sensorineural hearing loss. The Journal of the Acoustical Society of America, 120(6), 3929.PubMedCrossRefGoogle Scholar
  13. Bishop, D. V. M., Carlyon, R. P., Deeks, J. M., & Bishop, S. J. (1999). Auditory temporal processing impairment: neither necessary nor sufficient for causing language impairment in children. Journal of Speech, Language, and Hearing Research, 42(6), 1295–1310.PubMedGoogle Scholar
  14. Boddaert, N., Belin, P., Chabane, N., Poline, J., Barthélémy, C., Mouren-Simeoni, M. C., et al. (2003). Perception of complex sounds: Abnormal pattern of cortical activation in autism. The American Journal of Psychiatry, 160(11), 2057–2060.PubMedCrossRefGoogle Scholar
  15. Boddaert, N., Chabane, N., Belin, P., Bourgeois, M., Royer, V., Barthelemy, C., et al. (2004). Perception of complex sounds in autism: Abnormal auditory cortical processing in children. The American Journal of Psychiatry, 161(11), 2117–2120.PubMedCrossRefGoogle Scholar
  16. Bonnel, A., McAdams, S., Smith, B., Berthiaume, C., Bertone, A., Ciocca, V., et al. (2010). Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome. Neuropsychologia, 48(9), 2465–2475.PubMedCrossRefGoogle Scholar
  17. Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A. M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235.PubMedCrossRefGoogle Scholar
  18. Boucher, J. (2001). Lost in a sea of time: Time parsing and autism. In T. McCormack & C. Hoerl (Eds.), Time and memory (pp. 111–135). Oxford: Oxford University Press.Google Scholar
  19. Brown, W., Cammuso, K., Sachs, H., Winklosky, B., Mullane, J., Bernier, R., et al. (2003). Autism-related language, personality, and cognition in people with absolute pitch: Results of a preliminary study. Journal of Autism and Developmental Disorders, 33(2), 163–167.PubMedCrossRefGoogle Scholar
  20. Brown, C., & Dunn, W. (2002). Adolescent/adult sensory profile. San Antonio, TX: The Psychological Corporation.Google Scholar
  21. Bruneau, N., Bonnet-Brilhault, F., Gomot, M., Adrien, J.-L., & Barthélémy, C. (2003). Cortical auditory processing and communication in children with autism: Electrophysiological/behavioral relations. International Journal of Psychophysiology, 51(1), 17–25.PubMedCrossRefGoogle Scholar
  22. Bruneau, N., Roux, S., Adrien, J.-L., & Barthélémy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N1 wave-T complex). Clinical Neurophysiology, 110(11), 1927–1934.PubMedCrossRefGoogle Scholar
  23. Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765.PubMedCrossRefGoogle Scholar
  24. Ceponiene, R., Lepistö, T., Shestakova, A., Vanhala, R., Alku, P., Näätänen, R., et al. (2003). Speech-sound-selective auditory impairment in children with autism: They can perceive but do not attend. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5567–5572.PubMedCrossRefGoogle Scholar
  25. Collet, L., Roge, B., Descouens, D., Moron, P., Duverdy, F., & Urgell, H. (1993). Objective auditory dysfunction in infantile autism. Lancet, 342(8876), 923–924.PubMedCrossRefGoogle Scholar
  26. Constantino, J. N., & Gruber, C. P. (2005). The social responsiveness scale. Los Angeles: Western Psychological Services.Google Scholar
  27. Courchesne, E., Courchesne, R. Y., Hicks, G., & Lincoln, A. J. (1985). Functioning of the brain-stem auditory pathway in non-retarded autistic individuals. Electroencephalography and Clinical Neurophysiology, 61(6), 491–501.PubMedCrossRefGoogle Scholar
  28. Dawson, G., Finley, C., Phillips, S., & Galpert, L. (1986). Hemispheric specialization and the language abilities of autistic children. Child Development, 57(6), 1440–1453.PubMedCrossRefGoogle Scholar
  29. de Cheveigné, A. (2010). Pitch perception. In C. J. Plack (Ed.), The oxford handbook of auditory science: Hearing, pp. 71–104.Google Scholar
  30. DePape, A.-M. R., Hall, G. B. C., Tillmann, B., & Trainor, L. J. (2012). Auditory processing in high-functioning adolescents with autism spectrum disorder. PLoS ONE, 7(9), e44084.PubMedCrossRefGoogle Scholar
  31. Dohn, A., Garza-Villarreal, E. A., Heaton, P., & Vuust, P. (2012). Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? an empirical study. PLoS ONE, 7(5), e37961.PubMedCrossRefGoogle Scholar
  32. Dunn, W. (1999). Sensory profile. San Antonio, TX: Psychological Corporation.Google Scholar
  33. Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain, 135(3), 949–960.PubMedCrossRefGoogle Scholar
  34. Falter, C. M., Noreika, V., Wearden, J. H., & Bailey, A. J. (2012). More consistent, yet less sensitive: Interval timing in autism spectrum disorders. Quarterly Journal of Experimental Psychology. doi: 10.1080/17470218.2012.690770.
  35. Farmer, M. E., & Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bulletin & Review, 2(4), 460–493.CrossRefGoogle Scholar
  36. Fein, D., Humes, M., Kaplan, E., Lucci, D., & Waterhouse, L. (1984). The question of left hemisphere dysfunction in infantile autism. Psychological Bulletin, 95(2), 258–281.PubMedCrossRefGoogle Scholar
  37. Ferri, R., Elia, M., Agarwal, N., Lanuzza, B., & Pennisi, G. (2003). The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clinical Neurophysiology, 114(9), 1671–1680.PubMedCrossRefGoogle Scholar
  38. Flagg, E., Oram Cardy, J. E., Roberts, W., & Roberts, T. (2005). Language lateralization development in children with autism: Insights from the late field magnetoencephalogram. Neuroscience Letters, 386(2), 82–87.PubMedCrossRefGoogle Scholar
  39. Gage, N. M., Siegel, B., Callen, M., & Roberts, T. P. L. (2003a). Cortical sound processing in children with autism disorder: An MEG investigation. NeuroReport, 14(16), 2047–2051.PubMedCrossRefGoogle Scholar
  40. Gage, N. M., Siegel, B., & Roberts, T. P. L. (2003b). Cortical auditory system maturational abnormalities in children with autism disorder: An MEG investigation. Developmental Brain Research, 144(2), 201–209.PubMedCrossRefGoogle Scholar
  41. Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.PubMedCrossRefGoogle Scholar
  42. Ghaziuddin, M. (2008). Defining the behavioral phenotype of Asperger syndrome. Journal of Autism and Developmental Disorders, 38(1), 138–142.PubMedCrossRefGoogle Scholar
  43. Ghaziuddin, M., & Mountain-Kimchi, K. (2004). Defining the intellectual profile of Asperger syndrome: Comparison with high-functioning autism. Journal of Autism and Developmental Disorders, 34(3), 279–284.PubMedCrossRefGoogle Scholar
  44. Gomes, E., Pedroso, F. S., & Wagner, M. B. (2008). Auditory hypersensitivity in the autistic spectrum disorder. Pró-fono Revista de Atualização Científica, 20(4), 279–284.PubMedCrossRefGoogle Scholar
  45. Gomot, M., Belmonte, M., Bullmore, E., Bernard, F., & Baron-Cohen, S. (2008). Brain hyper-reactivity to auditory novel targets in children with high-functioning autism. Brain, 131(9), 2479–2488.PubMedCrossRefGoogle Scholar
  46. Gomot, M., Blanc, R., Clery, H., Roux, S., Barthélémy, C., & Bruneau, N. (2011). Candidate electrophysiological endophenotypes of hyper-reactivity to change in autism. Journal of Autism and Developmental Disorders, 41(6), 705–714.PubMedCrossRefGoogle Scholar
  47. Gomot, M., Giard, M. H., Adrien, J. L., Barthelemy, C., & Bruneau, N. (2002). Hypersensitivity to acoustic change in children with autism: electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology, 39(5), 577–584.PubMedCrossRefGoogle Scholar
  48. Gowen, E., & Miall, R. C. (2005). Behavioural aspects of cerebellar function in adults with Asperger syndrome. Cerebellum, 4(4), 279–289.PubMedCrossRefGoogle Scholar
  49. Gravel, J. S., Dunn, M., Lee, W. W., & Ellis, M. A. (2006). Peripheral audition of children on the autistic spectrum. Ear and Hearing, 27(3), 299–312.PubMedCrossRefGoogle Scholar
  50. Griffiths, T. D., Büchel, C., Frackowiak, R. S. J., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1(5), 422–427.PubMedCrossRefGoogle Scholar
  51. Griffiths, T. D., Uppenkamp, S., Johnsrude, I. S., Josephs, O., & Patterson, R. D. (2001). Encoding of the temporal regularity of sound in the human brainstem. Nature Neuroscience, 4(6), 633–637.PubMedCrossRefGoogle Scholar
  52. Grillon, C., Courchesne, E., & Akshoomoff, N. (1989). Brainstem and middle latency auditory evoked potentials in autism and developmental language disorder. Journal of Autism and Developmental Disorders, 19(2), 255–269.PubMedCrossRefGoogle Scholar
  53. Groen, W. B., van Orsouw, L., Huurne, N. T., Swinkels, S., van der Gaag, R.-J., Buitelaar, J. K., et al. (2009). Intact spectral but abnormal temporal processing of auditory stimuli in autism. Journal of Autism and Developmental Disorders, 39(5), 742–750.PubMedCrossRefGoogle Scholar
  54. Grondin, S., Meilleur-Wells, G., & Lachance, R. (1999). When to start explicit counting in a time-intervals discrimination task: A critical point in the timing process of humans. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 993–1004.CrossRefGoogle Scholar
  55. Grose, J. H. (2008). Gap detection and ear of presentation: Examination of disparate findings: re: Sininger Y.S., & de Bode, S. (2008). Asymmetry of temporal processing in listeners with normal hearing and unilaterally deaf subjects. Ear Hear 29, 228–238. Ear and hearing, 29(6), 973–6; author reply 976–9.Google Scholar
  56. Grose, J. H., Eddins, D. A., & Hall, J. W. (1989). Gap detection as a function of stimulus bandwidth with fixed high-frequency cutoff in normal-hearing and hearing-impaired listeners. The Journal of the Acoustical Society of America, 86(5), 1747–1755.PubMedCrossRefGoogle Scholar
  57. Haesen, B., Boets, B., & Wagemans, J. (2011). A review of behavioural and electrophysiological studies on auditory processing and speech perception in autism spectrum disorders. Research in Autism Spectrum Disorders, 5(2), 701–714.CrossRefGoogle Scholar
  58. Hasuo, E., Nakajima, Y., Osawa, S., & Fujishima, H. (2011). Effects of temporal shapes of sound markers on the perception of interonset time intervals. Attention, Perception, & Psychophysics, 74(2), 430–445.CrossRefGoogle Scholar
  59. Hayes, R. W., & Gordon, A. G. (1977). Auditory abnormalities in autistic children. Lancet, 2(8041), 767.PubMedCrossRefGoogle Scholar
  60. Heaton, P. (2003). Pitch memory, labelling and disembedding in autism. Journal of Child Psychology and Psychiatry, 44(4), 543–551.PubMedCrossRefGoogle Scholar
  61. Heaton, P., Hermelin, B., & Pring, L. (1998). Autism and pitch processing: A precursor for savant musical ability? Music Perception, 15(3), 291–305.CrossRefGoogle Scholar
  62. Heaton, P., Hudry, K., Ludlow, A., & Hill, E. (2008a). Superior discrimination of speech pitch and its relationship to verbal ability in autism spectrum disorders. Cognitive Neuropsychology, 25(6), 771–782.PubMedCrossRefGoogle Scholar
  63. Heaton, P., Williams, K., Cummins, O., & Happé, F. G. E. (2008b). Autism and pitch processing splinter skills: A group and subgroup analysis. Autism, 12(2), 203–219.PubMedCrossRefGoogle Scholar
  64. Holtmann, M., Steiner, S., Hohmann, S., Poustka, L., Banaschewski, T., & Bölte, S. (2011). Neurofeedback in autism spectrum disorders. Developmental Medicine and Child Neurology, 53(11), 986–993.PubMedCrossRefGoogle Scholar
  65. Howlin, P. (2003). Outcome in high-functioning adults with autism with and without early language delays: Implications for the differentiation between autism and Asperger syndrome. Journal of Autism and Developmental Disorders, 33(1), 3–13.PubMedCrossRefGoogle Scholar
  66. Hyde, K. L., Peretz, I., & Zatorre, R. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46(2), 632–639.PubMedCrossRefGoogle Scholar
  67. Jansson-Verkasalo, E., Ceponiene, R., Kielinen, M., Suominen, K., Jäntti, V., Linna, S. L., et al. (2003). Deficient auditory processing in children with Asperger Syndrome, as indexed by event-related potentials. Neuroscience Letters, 338(3), 197–200.PubMedCrossRefGoogle Scholar
  68. Järvinen-Pasley, A., & Heaton, P. (2007). Evidence for reduced domain-specificity in auditory processing in autism. Developmental Science, 10(6), 786–793.PubMedCrossRefGoogle Scholar
  69. Järvinen-Pasley, A., Wallace, G., Ramus, F., Happé, F., & Heaton, P. (2008). Enhanced perceptual processing of speech in autism. Developmental Science, 11(1), 109–121.PubMedCrossRefGoogle Scholar
  70. Jones, C. R., Happé, F., Baird, G., Simonoff, E., Marsden, A. J., Tregay, J., et al. (2009). Auditory discrimination and auditory sensory behaviours in autism spectrum disorders. Neuropsychologia, 47(13), 2850–2858.PubMedCrossRefGoogle Scholar
  71. Jongman, A., Wayland, R., & Wong, S. (2000). Acoustic characteristics of English fricatives. The Journal of the Acoustical Society of America, 108(3 Pt 1), 1252–1263.PubMedCrossRefGoogle Scholar
  72. Kallman, H. J. (1977). Ear asymmetries with monaurally-presented sounds. Neuropsychologia, 15(6), 833–835.PubMedCrossRefGoogle Scholar
  73. Kallman, H., & Corballis, M. C. (1975). Ear asymmetry in reaction time to musical sounds. Perception & Psychophysics, 17(4), 368–370.CrossRefGoogle Scholar
  74. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & Van Engeland, H. (1995). Auditory event-related brain potentials in autistic children and three different control groups. Biological Psychiatry, 38(3), 150–165.PubMedCrossRefGoogle Scholar
  75. Kern, J. K., Trivedi, M. H., Garver, C. R., Grannemann, B. D., Andrews, A. A., Savla, J. S., et al. (2006). The pattern of sensory processing abnormalities in autism. Autism, 10(5), 480–494.PubMedCrossRefGoogle Scholar
  76. Kern, J. K., Trivedi, M. H., Grannemann, B. D., Garver, C. R., Johnson, D. G., Andrews, A., et al. (2007). Sensory correlations in autism. Autism, 11(2), 123–134.PubMedCrossRefGoogle Scholar
  77. Khalfa, S., Bruneau, N., Rogé, B., Georgieff, N., Veuillet, E., Adrien, J. L., et al. (2001). Peripheral auditory asymmetry in infantile autism. European Journal of Neuroscience, 13(3), 628–632.PubMedCrossRefGoogle Scholar
  78. Khalfa, S., Bruneau, N., Rogé, B., Georgieff, N., Veuillet, E., Adrien, J. L., et al. (2004). Increased perception of loudness in autism. Hearing Research, 198(1–2), 87–92.PubMedCrossRefGoogle Scholar
  79. Kientz, M. A., & Dunn, W. (1997). A comparison of the performance of children with and without autism on the Sensory Profile. The American Journal of Occupational Therapy, 51(7), 530–537.PubMedCrossRefGoogle Scholar
  80. Kimura, D. (1961). Cerebral dominance and the perception of verbal stimuli. Canadian Journal of Psychology, 15(3), 166–171.CrossRefGoogle Scholar
  81. Kimura, D. (1963). Speech lateralization in young children as determined by an auditory test. Journal of Comparative and Physiological Psychology, 56, 899–902.PubMedCrossRefGoogle Scholar
  82. Kimura, D. (1964). Left-right differences in the perception of melodies. The Quarterly Journal of Experimental Psychology, XVI(Part IV), pp. 355–358.Google Scholar
  83. Kimura, D. (1967). Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163–178.CrossRefGoogle Scholar
  84. King, F. L., & Kimura, D. (1972). Left-ear superiority in dichotic perception of vocal nonverbal sounds. Canadian Journal of Psychology, 26(2), 111–116.PubMedCrossRefGoogle Scholar
  85. Klatt, D. H. (1975). Voice onset time, frication, and aspiration in word-initial consonant clusters. Journal of Speech, Language, and Hearing Research, 18(4), 686.Google Scholar
  86. Klin, A. (1993). Auditory brainstem responses in autism: Brainstem dysfunction or peripheral hearing loss? Journal of Autism and Developmental Disorders, 23(1), 15–35.PubMedCrossRefGoogle Scholar
  87. Konstantareas, M. M., & Homatidis, S. (1987). Brief report: Ear infections in autistic and normal children. Journal of Autism and Developmental Disorders, 17(4), 585–594.PubMedCrossRefGoogle Scholar
  88. Kouijzer, M. E. J., Schie, H. T., Gerrits, B. J. L., Buitelaar, J. K., & Moor, J. M. H. (2012). Is EEG-biofeedback an effective treatment in autism spectrum disorders? A randomized controlled trial. Applied Psychophysiology and Biofeedback. doi: 10.1007/s10484-012-9204-3.
  89. Kuhl, P. K., Coffey-Corina, S., Padden, D., & Dawson, G. (2005). Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological measures. Developmental Science, 8(1), F1–F12. doi: 10.1111/j.1467-7687.2004.00384.x.PubMedCrossRefGoogle Scholar
  90. Kujala, T., Aho, E., Lepistö, T., Jansson-Verkasalo, E., Nieminen-von Wendt, T., Wendt, von, L., & Näätänen, R. (2007). Atypical pattern of discriminating sound features in adults with Asperger syndrome as reflected by the mismatch negativity. Biological Psychology, 75(1), 109–114.Google Scholar
  91. Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L., & Wallace, M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in integrative neuroscience, 4, 129. doi: 10.3389/fnint.2010.00129.PubMedCrossRefGoogle Scholar
  92. Leekam, S., Nieto, C., Libby, S., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37(5), 894–910.PubMedCrossRefGoogle Scholar
  93. Lepistö, T., Kujala, T., Vanhala, R., Alku, P., Huotilainen, M., & Näätänen, R. (2005). The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Research, 1066(1–2), 147–157.PubMedCrossRefGoogle Scholar
  94. Levitin, D. J., Cole, K., Chiles, M., Lai, Z., Lincoln, A., & Bellugi, U. (2004). Characterizing the musical phenotype in individuals with Williams syndrome. Child Neuropsychology, 10(4), 223–247.PubMedCrossRefGoogle Scholar
  95. Levitin, D. J., Cole, K., Lincoln, A. J., & Bellugi, U. (2005). Aversion, awareness, and attraction: Investigating claims of hyperacusis in the Williams syndrome phenotype. Journal of Child Psychology and Psychiatry, 46(5), 514–523.PubMedCrossRefGoogle Scholar
  96. Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250–255.PubMedCrossRefGoogle Scholar
  97. Liégeois-Chauvel, C., Giraud, K., Badier, J. M., Marquis, P., & Chauvel, P. (2001). Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the human auditory cortex. Annals of the New York Academy of Sciences, 930, 117–132.PubMedCrossRefGoogle Scholar
  98. Madsen, C. K., Edmonson, F. A., & Madsen, C. H. (1969). Modulated frequency discrimination in relation to age and musical training. Journal of the Acoustical Society of America, 46(6), 1468–1472.PubMedCrossRefGoogle Scholar
  99. Martin, J. S., Poirier, M., & Bowler, D. M. (2010). Brief report: Impaired temporal reproduction performance in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 40(5), 640–646.PubMedCrossRefGoogle Scholar
  100. Mauk, M., & Buonomano, D. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27(1), 307–340.PubMedCrossRefGoogle Scholar
  101. Merzenich, M. M., Jenkins, W. M., Johnston, P., Schreiner, C., Miller, S. L., & Tallal, P. (1996). Temporal processing deficits of language-learning impaired children ameliorated by training. Science, 271(5245), 77–81.PubMedCrossRefGoogle Scholar
  102. Moore, B. C. J., & Peters, R. W. (1992). Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity. The Journal of the Acoustical Society of America, 91, 2881.PubMedCrossRefGoogle Scholar
  103. Mostofsky, S. H., Goldberg, M. C., Landa, R. J., & Denckla, M. B. (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. Journal of the International Neuropsychological Society, 6(7), 752–759.PubMedCrossRefGoogle Scholar
  104. Musicant, A. D., & Butler, R. A. (1984). The influence of pinnae-based spectral cues on sound localization. The Journal of the Acoustical Society of America, 75(4), 1195.PubMedCrossRefGoogle Scholar
  105. Okamoto, H., Stracke, H., Draganova, R., & Pantev, C. (2009). Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change. Cerebral Cortex, 19(10), 2290–2297.PubMedCrossRefGoogle Scholar
  106. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.PubMedCrossRefGoogle Scholar
  107. Oram Cardy, J. E., Flagg, E. J., Roberts, W., Brian, J., & Roberts, T. P. L. (2005). Magnetoencephalography identifies rapid temporal processing deficit in autism and language impairment. NeuroReport, 16(4), 329–332.PubMedCrossRefGoogle Scholar
  108. O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665–675.PubMedCrossRefGoogle Scholar
  109. Ozonoff, S., Rogers, S. J., & Pennington, B. F. (1993). Asperger’s syndrome: Evidence of an empirical distinction from high-functioning autism. The Journal of Child Psychology and Psychiatry, 32(7), 1107–1122.CrossRefGoogle Scholar
  110. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767–776.PubMedCrossRefGoogle Scholar
  111. Plaisted, K., Saksida, L., Alcántara, J. I., & Weisblatt, E. J. L. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 358(1430), 375–386.PubMedCrossRefGoogle Scholar
  112. Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56–61.PubMedCrossRefGoogle Scholar
  113. Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64(3), 295–301.PubMedGoogle Scholar
  114. Prior, M. R., & Bradshaw, J. L. (1979). Hemisphere functioning in autistic children. Cortex, 15(1), 73–81.PubMedCrossRefGoogle Scholar
  115. Rapin, I., & Dunn, M. (2003). Update on the language disorders of individuals on the autistic spectrum. Brain & Development, 25(3), 166–172.CrossRefGoogle Scholar
  116. Reed, M. A. (1989). Speech perception and the discrimination of brief auditory cues in reading disabled children. Journal of Experimental Child Psychology, 48(2), 270–292.PubMedCrossRefGoogle Scholar
  117. Rogers, S., Hepburn, S., & Wehner, E. (2003). Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. Journal of Autism and Developmental Disorders, 33(6), 631–642.PubMedCrossRefGoogle Scholar
  118. Rosenhall, U., Nordin, V., Sandström, M., Ahlsén, G., & Gillberg, C. (1999). Autism and hearing loss. Journal of Autism and Developmental Disorders, 29(5), 349–357.PubMedCrossRefGoogle Scholar
  119. Roth, D. A.-E., Muchnik, C., Shabtai, E., Hildesheimer, M., & Henkin, Y. (2012). Evidence for atypical auditory brainstem responses in young children with suspected autism spectrum disorders. Developmental Medicine and Child Neurology, 54(1), 23–29.PubMedCrossRefGoogle Scholar
  120. Russo, N. M., Nicol, T. G., Trommer, B., Zecker, S. G., & Kraus, N. (2009). Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Developmental Science, 12(4), 557–567.PubMedCrossRefGoogle Scholar
  121. Russo, N. M., Skoe, E., Trommer, B., Nicol, T. G., Zecker, S. G., Bradlow, A., et al. (2008). Deficient brainstem encoding of pitch in children with autism spectrum disorders. Clinical Neurophysiology, 119(8), 1720–1731.PubMedCrossRefGoogle Scholar
  122. Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology, 17(4), 688–690.CrossRefGoogle Scholar
  123. Samson, F., Hyde, K. L., Bertone, A., Soulières, I., Mendrek, A., Ahad, P., et al. (2011). Atypical processing of auditory temporal complexity in autistics. Neuropsychologia, 49(3), 546–555.PubMedCrossRefGoogle Scholar
  124. Schneider, B. A., Pichora-Fuller, M. K., Kowalchuk, D., & Lamb, M. (1994). Gap detection and the precedence effect in young and old adults. The Journal of the Acoustical Society of America, 95(2), 980–991.PubMedCrossRefGoogle Scholar
  125. Schön, D., Magne, C., & Besson, M. (2004). The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology, 41(3), 341–349.PubMedCrossRefGoogle Scholar
  126. Schönwiesner, M., Rübsamen, R., & von Cramon, D. Y. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. The European journal of neuroscience, 22(6), 1521–1528.PubMedCrossRefGoogle Scholar
  127. Schulte-Körne, G., Deimel, W., Bartling, J., & Remschmidt, H. (1998). Auditory processing and dyslexia: Evidence for a specific speech processing deficit. NeuroReport, 9(2), 337–340.PubMedCrossRefGoogle Scholar
  128. Schvartz, K. C., & Chatterjee, M. (2012). Gender identification in younger and older adults: Use of spectral and temporal cues in noise-vocoded speech. Ear and Hearing, 33(3), 411–420.PubMedCrossRefGoogle Scholar
  129. Shailer, M. J., & Moore, B. C. J. (1983). Gap detection as a function of frequency, bandwidth, and level. The Journal of the Acoustical Society of America, 74(2), 467–473.PubMedCrossRefGoogle Scholar
  130. Shannon, R. V., Zeng, F. G., & Wygonski, J. (1998). Speech recognition with altered spectral distribution of envelope cues. The Journal of the Acoustical Society of America, 104(4), 2467–2476.PubMedCrossRefGoogle Scholar
  131. Sidtis, J. J. (1982). Predicting brain organization from dichotic listening performance: Cortical and subcortical functional asymmetries contribute to perceptual asymmetries. Brain and Language, 17(2), 287–300.PubMedCrossRefGoogle Scholar
  132. Sininger, Y., & Bhatara, A. (2012). Laterality of basic auditory perception. Laterality, 17(2), 129–149.PubMedGoogle Scholar
  133. Sininger, Y., & de Bode, S. (2008). Asymmetry of temporal processing in listeners with normal hearing and unilaterally deaf subjects. Ear and Hearing, 29(2), 228.PubMedCrossRefGoogle Scholar
  134. Smith, D. E., McConnell, J. V., Walter, T. L., & Miller, S. D. (1985). Effect of using an auditory trainer on the attentional, language, and social behaviors of autistic children. Journal of Autism and Developmental Disorders, 15(3), 285–302.PubMedCrossRefGoogle Scholar
  135. Soulières, I., Mottron, L., Saumier, D., & Larochelle, S. (2007). Atypical categorical perception in autism: Autonomy of discrimination? Journal of Autism and Developmental Disorders, 37(3), 481–490.PubMedCrossRefGoogle Scholar
  136. Stelmachowicz, P. G., Pittman, A. L., Hoover, B. M., & Lewis, D. E. (2001). Effect of stimulus bandwidth on the perception of /s/ in normal- and hearing-impaired children and adults. The Journal of the Acoustical Society of America, 110(4), 2183.PubMedCrossRefGoogle Scholar
  137. Stevens, K. N., & Klatt, D. H. (1974). Role of formant transitions in the voiced-voiceless distinction for stops. The Journal of the Acoustical Society of America, 55(3), 653–659.PubMedCrossRefGoogle Scholar
  138. Szelag, E., Kowalska, J., Galkowski, T., & Pöppel, E. (2004). Temporal processing deficits in high-functioning children with autism. British Journal of Psychology, 95, 269–282.PubMedCrossRefGoogle Scholar
  139. Tallal, P., & Gaab, N. (2006). Dynamic auditory processing, musical experience and language development. Trends in Neurosciences, 29(7), 382–390.PubMedCrossRefGoogle Scholar
  140. Tallal, P., Miller, S. L., Bedi, G., Byma, G., Wang, X., Nagarajan, S. S., et al. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech. Science, 271(5245), 81–84.PubMedCrossRefGoogle Scholar
  141. Tallal, P., & Stark, R. E. (1981). Speech acoustic-cue discrimination abilities of normally developing and language-impaired children. The Journal of the Acoustical Society of America, 69(2), 568–574.PubMedCrossRefGoogle Scholar
  142. Tallal, P., Stark, R. E., & Mellits, D. (1985a). The relationship between auditory temporal analysis and receptive language development: Evidence from studies of developmental language disorder. Neuropsychologia, 23(4), 527–534.PubMedCrossRefGoogle Scholar
  143. Tallal, P., Stark, R. E., & Mellits, D. (1985b). The relationship between auditory temporal analysis and receptive language development: Evidence from studies of developmental language disorder. Neuropsychologia, 23(4), 527–534.PubMedCrossRefGoogle Scholar
  144. Tan, Y.-H. (2012). Auditory abnormalities in children with autism. Open Journal of Psychiatry, 02(01), 33–37.CrossRefGoogle Scholar
  145. Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43, 231–246.PubMedCrossRefGoogle Scholar
  146. Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. The American Journal of Occupational Therapy, 61(2), 190–200.PubMedCrossRefGoogle Scholar
  147. Trehub, S. E., Schneider, B. A., & Henderson, J. L. (1995). Gap detection in infants, children, and adults. The Journal of the Acoustical Society of America, 98(5 Pt 1), 2532–2541.PubMedCrossRefGoogle Scholar
  148. Tyler, R. S., Wood, E. J., & Fernandes, M. (1983). Frequency resolution and discrimination of constant and dynamic tones in normal and hearing-impaired listeners. The Journal of the Acoustical Society of America, 74, 1190.PubMedCrossRefGoogle Scholar
  149. Van Ingelghem, M., van Wieringen, A., Wouters, J., Vandenbussche, E., Onghena, P., & Ghesquière, P. (2001). Psychophysical evidence for a general temporal processing deficit in children with dyslexia. NeuroReport, 12(16), 3603–3607.PubMedCrossRefGoogle Scholar
  150. Wallace, G. L., & Happé, F. (2008). Time perception in autism spectrum disorders. Research in Autism Spectrum Disorders, 2(3), 447–455.CrossRefGoogle Scholar
  151. Warrier, C., Wong, P. C. M., Penhune, V. B., Zatorre, R., Parrish, T., Abrams, D., et al. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. Journal of Neuroscience, 29(1), 61–69.PubMedCrossRefGoogle Scholar
  152. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.Google Scholar
  153. Wiggins, L., Robins, D., Bakeman, R., & Adamson, L. (2009). Brief report: Sensory abnormalities as distinguishing symptoms of autism spectrum disorders in young children. Journal of Autism and Developmental Disorders, 39(7), 1087–1091.PubMedCrossRefGoogle Scholar
  154. Wilson, R. H. (2003). Development of a speech in multitalker babble paradigm to assess word-recognition performance. Journal of the American Academy of Audiology, 14, 453–470.PubMedGoogle Scholar
  155. Wilson, R. H., & Burks, C. A. (2005). The use of 35 words to evaluate hearing loss in terms of signal-to-babble ratio: A clinic protocol. Journal of Rehabilitation Research and Development, 42, 839–852.PubMedCrossRefGoogle Scholar
  156. Zatorre, R. J. (1988). Pitch perception of complex tones and human temporal-lobe function. The Journal of the Acoustical Society of America, 84(2), 566–572.PubMedCrossRefGoogle Scholar
  157. Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11(10), 946–953.PubMedCrossRefGoogle Scholar
  158. Zatorre, R., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences, 6(1), 37–46.PubMedCrossRefGoogle Scholar
  159. Zatorre, R., & Gandour, J. T. (2008). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1493), 1087–1104.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anjali Bhatara
    • 1
    • 2
    • 3
    Email author
  • Talin Babikian
    • 4
  • Elizabeth Laugeson
    • 4
    • 5
  • Raffi Tachdjian
    • 6
  • Yvonne S. Sininger
    • 1
  1. 1.Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Université Paris Descartes, Sorbonne Paris CitéParisFrance
  3. 3.CNRS (Laboratoire Psychologie de la Perception, UMR 8158)ParisFrance
  4. 4.Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesUSA
  5. 5.The Help Group—UCLA Autism Research AllianceSherman OaksUSA
  6. 6.Departments of Medicine and PediatricsDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations