Journal of Autism and Developmental Disorders

, Volume 43, Issue 8, pp 1857–1866 | Cite as

Enhanced Access to Early Visual Processing of Perceptual Simultaneity in Autism Spectrum Disorders

  • Christine M. Falter
  • Sven Braeutigam
  • Roger Nathan
  • Sarah Carrington
  • Anthony J. Bailey
Original Paper


We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset delays. Participants with ASD distinguished significantly better between real simultaneity (0 ms delay between two stimuli) and apparent simultaneity (17 ms delay between two stimuli) than controls. In line with the increased sensitivity, event-related MEG activity showed increased differential responses for simultaneity versus apparent simultaneity. The strongest evoked potentials, observed over occipital cortices at about 130 ms, were correlated with performance differences in the ASD group only. Superior access to early visual brain processes in ASD might underlie increased resolution of visual events in perception.


High-functioning autism Asperger syndrome Event timing Visual simultaneity Magnetoencephalography 


  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press, Inc.Google Scholar
  2. Berg, P., & Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. Electroencephalography and Clinical Neurophysiology, 90(3), 229–241.PubMedCrossRefGoogle Scholar
  3. Braeutigam, S., Rose, S. P. R., Swithenby, S. J., & Ambler, T. (2004). The distributed neuronal systems supporting choice-making in real-life situations: Differences between men and women when choosing groceries detected using magnetoencephalography. European Journal of Neuroscience, 20(1), 293–302.PubMedCrossRefGoogle Scholar
  4. Brecher, G. A. (1932). Die Entstehung und biologische Bedeutung der subjektiven Zeiteinheit – des Momentes. Zeitschrift fuer vergleichende Physiologie, 18, 204–243.Google Scholar
  5. Chiron, C., Leboyer, M., Leon, F., Jambaque, L., Nuttin, C., & Syrota, A. (1995). SPECT of the brain in childhood autism: Evidence for a lack of normal hemispheric asymmetry. Developmental Medicine and Child Neurology, 37(10), 849–860.PubMedCrossRefGoogle Scholar
  6. Corbin, H. H. (1942). The perception of grouping and apparent movement in visual depth. Archives of Psychology, 273, 5–50.Google Scholar
  7. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48, 497–507.PubMedCrossRefGoogle Scholar
  8. Edgin, J. O., & Pennington, B. F. (2005). Spatial cognition in autism spectrum disorders: Superior, impaired, or just intact? Journal of Autism and Developmental Disorders, 35(6), 729–745.PubMedCrossRefGoogle Scholar
  9. Efron, R. (1963). The effect of handedness on the perception of simultaneity and temporal order. Brain, 86, 261–284.CrossRefGoogle Scholar
  10. Elliott, M. A., Shi, Z., & Surer, F. (2007). The effects of subthreshold synchrony on the perception of simultaneity. Psychological Research, 71, 687–693.PubMedCrossRefGoogle Scholar
  11. Falter, C. M., Elliott, M., & Bailey, A. (2012). Increased perceptual resolution: Temporal event-structure coding in autism spectrum disorders. PlosOne, 7(3), 1–6.Google Scholar
  12. Falter, C. M., Plaisted, K. C., & Davis, G. (2008). Visuo-spatial processing in autism—testing the predictions of extreme male brain theory. Journal of Autism and Developmental Disorders, 38(3), 507–515.PubMedCrossRefGoogle Scholar
  13. Falter, C. M., Plaisted Grant, K. C. P., & Davis, G. (2010). Object-based attention benefits reveal selective abnormalities of visual integration in autism. Autism Research, 3(3), 128–136.PubMedCrossRefGoogle Scholar
  14. Gage, N. M., Juranek, J., Filipek, P. A., Osann, K., Flodman, P., Isenberg, A. L., et al. (2009). Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: An MRI investigation. Journal of Neurodevelopmental Disorders, 1, 205–214.PubMedCrossRefGoogle Scholar
  15. Gur, M., & Snodderly, D. M. (1997). A dissociation between brain activity and perception: Chromatically opponent cortical neurons signal chromatic flicker that is not perceived. Vision Research, 37(4), 377–382.PubMedCrossRefGoogle Scholar
  16. Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.PubMedCrossRefGoogle Scholar
  17. Haynes, J. D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8(5), 686–691.PubMedCrossRefGoogle Scholar
  18. Haynes, J. D., Roth, G., Stadler, M., & Heinze, H. J. (2003). Neuromagnetic correlates of perceived contrast in primary visual cortex. Journal of Neurophysiology, 89(5), 2655–2666.PubMedCrossRefGoogle Scholar
  19. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioural and Brain Sciences, 24(5), 849–937.CrossRefGoogle Scholar
  20. Inquisit 3 (Computer software). (2003). Seattle, WA: Millisecond Software.Google Scholar
  21. Jarrold, C., Gilchrist, I. D., & Bender, A. (2005). Embedded figures detection in autism and typical development: Preliminary evidence of a double dissociation in relationships with visual search. Developmental Science, 8(4), 344–351.PubMedCrossRefGoogle Scholar
  22. Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37, 894–910.PubMedCrossRefGoogle Scholar
  23. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observations schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.PubMedCrossRefGoogle Scholar
  24. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview—revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.PubMedCrossRefGoogle Scholar
  25. Mottron, L., & Burack, J. (2001). Enhanced perceptual functioning in the development of autism. In J. A. Burack, A. Charman, N. Yirmiya, & P. R. Zelazo (Eds.), Development and autism: Perspectives from theory and research (pp. 131–148). Mahwah, NJ: Erlbaum.Google Scholar
  26. Mottron, L., Burack, J. A., Stauder, J. E. A., & Robaey, P. (1999). Perceptual processing among high-functioning persons with autism. Journal of Child Psychology and Psychiatry, 40, 203–211.PubMedCrossRefGoogle Scholar
  27. Plaisted, K. C. (2001). Reduced generalization in autism: An alternative to weak central coherence. In J. A. Burack, A. Charman, N. Yirmiya, & P. R. Zelazo (Eds.), The development of autism: Perspectives from theory and research (pp. 149–169). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  28. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced visual search for a conjunctive target in autism: A research note. Journal of Child Psychology and Psychiatry, 39, 777–783.PubMedCrossRefGoogle Scholar
  29. Plaisted, K., Swettenham, J., & Rees, L. (1999). Children with autism show local precedence in a divided attention task and global precedence in a selective attention task. Journal of Child Psychology and Psychiatry, 40, 733–742.PubMedCrossRefGoogle Scholar
  30. Rock, I., & Brosgole, L. (1964). Grouping based on phenomenal proximity. Journal of Experimental Psychology, 67(6), 531–538.PubMedCrossRefGoogle Scholar
  31. Rock, I., & Ebenholtz, S. (1962). Stroboscopic movement based on change of phenomenal rather than retinal location. The American Journal of Psychology, 75(2), 193–207.PubMedCrossRefGoogle Scholar
  32. Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry, 24(4), 613–620.PubMedCrossRefGoogle Scholar
  33. Soulieres, I., Zeffiro, T. A., Girard, M. L., & Mottron, L. (2011). Enhanced mental image mapping in autism. Neuropsychologia, 49(5), 848–857.PubMedCrossRefGoogle Scholar
  34. Tallal, P., Miller, S., & Fitch, R. H. (1993). Neurobiological basis of speech: A case for the preeminence of temporal processing. Annals New York Academy of Sciences, 682(1), 27–47.CrossRefGoogle Scholar
  35. Trevarthen, C., & Daniel, S. (2005). Disorganized rhythm and synchrony: Early signs of autism and Rett syndrome. Brain and Development, 27(Suppl 1), 25–34.CrossRefGoogle Scholar
  36. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christine M. Falter
    • 1
    • 2
  • Sven Braeutigam
    • 3
  • Roger Nathan
    • 2
  • Sarah Carrington
    • 4
  • Anthony J. Bailey
    • 5
  1. 1.Department of Clinical and Developmental NeuropsychologyUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of PsychiatryUniversity of OxfordOxfordUK
  3. 3.Oxford Centre for Human Brain Activity (OHBA)University of OxfordOxfordUK
  4. 4.Wales Autism Research Centre, School of PsychologyCardiff UniversityCardiffUK
  5. 5.UBC Institute of Mental HealthUniversity of British ColumbiaVancouverCanada

Personalised recommendations