Journal of Autism and Developmental Disorders

, Volume 43, Issue 8, pp 1976–1982 | Cite as

Brief Report: Preliminary Evidence of Reduced Sensitivity in the Peripheral Visual Field of Adolescents with Autistic Spectrum Disorder

  • Elizabeth Milne
  • Alison Scope
  • Helen Griffiths
  • Charlotte Codina
  • David Buckley
Brief Report


A number of studies have demonstrated atypical perception in individuals with ASD. However, the majority of these studies have presented stimuli to central vision. The aim of the study presented here was to test the sensitivity of peripheral vision in ASD. This was achieved by asking participants to detect brief flashes of light presented between 30 and 85 degrees away from fixation. We found that participants with ASD detected fewer ligh-flashes than the control participants. This deficit was more pronounced in the nasal hemifield than the temporal hemifield. We suggest that the imbalance between nasal and temporal hemifield sensitivity may contribute to the peripheral-field stimulation and lateral glances that are observed in ASD.


Vision Peripheral visual field Nasal hemifield Temporal hemifield Dorsal stream Ventral stream Rods Cones Perception Autism spectrum disorder 



We thank Ania Czyź for double rating the eye movement data, and are grateful to all participants, Rowan Primary School, Bents Green Secondary School, Alderwadsley Hall School, Fullerton House School and Wilsic Hall School for generously giving their time to participate in the research. This work was supported by the Economic and Social Research Council (research grant RES-000-22-1868).


  1. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128, 2430–2441.PubMedCrossRefGoogle Scholar
  2. Bölte, S., Schlitt, S., Gapp, V., Hainz, D., Schirman, S., Poustka, F., et al. (2012). A close eye on the eagle-eyed visual acuity hypothesis of autism. Journal of Autism and Developmental Disorders, 42(5), 726–733.Google Scholar
  3. Buckley, D., Codina, C., Bhardwaj, P., & Pascalis, O. (2010). Action video game players and deaf observers have larger Goldmann visual fields. Vision Research, 50(5), 548–556.PubMedCrossRefGoogle Scholar
  4. Codina, C., Buckley, D., Port, M., & Pascalis, O. (2011). Deaf and hearing children: a comparison of peripheral vision development. Developmental Science, 14(4), 725–737.PubMedCrossRefGoogle Scholar
  5. Falkmer, M., Stuart, G. W., Danielsson, H., Bram, S., Lönebrink, M., & Falkmer, T. (2011). Visual acuity in adults with asperger’s syndrome: No evidence for “Eagle-Eyed” vision. Biological Psychiatry, 70(9), 812–816.PubMedCrossRefGoogle Scholar
  6. Grandin, T. (1996). Thinking in pictures: And other reports of my life with autism (p. 73). New York: Doubleday.Google Scholar
  7. Green, C. S., & Bavelier, D. (2003). Action video games modify visual selective attention. Nature, 423, 534–537.Google Scholar
  8. Henson, D. B. (2000). Visual fields. Oxford: Butterworth-Heinmann.Google Scholar
  9. Jones, C. R. G., Swettenham, J., Charman, T., Marsden, A. J. S., Tregay, J., Baird, G., et al. (2011). No evidence for a fundamental visual motion processing deficit in adolescents with autism spectrum disorders. Autism Research, 4(5), 347–357.PubMedCrossRefGoogle Scholar
  10. Kéïta, L., Mottron, L., & Bertone, A. (2010). Far visual acuity is unremarkable in autism: Do we need to focus on crowding? Autism Research, 3(6), 333–341.PubMedCrossRefGoogle Scholar
  11. Koh, H., Milne, E., & Dobkins, K. (2010). Spatial contrast sensitivity in adolescents with autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(8), 978–987.PubMedCrossRefGoogle Scholar
  12. Milne, E., & Griffiths, H. (2007). Visual perception and visual dysfunction in autistic spectrum disorder: a literature review. British and Irish Orthoptics Journal, 4, 15–20.Google Scholar
  13. Milne, E., Griffiths, H., Buckley, D., & Scope, A. (2009). Vision in children and adolescents with autistic spectrum disorder: Evidence for reduced convergence. Journal of Autism and Developmental Disorders, 39, 965–975.PubMedCrossRefGoogle Scholar
  14. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 43, 255–263.CrossRefGoogle Scholar
  15. Milne, E., White, S., Campbell, R., Swettenham, J., Hansen, P., & Ramus, F. (2006). Motion and form coherence in autistic spectrum disorder: Relationship to motor control and 2:4 digit ratio. Journal of Autism and Developmental Disorders, 36, 225–237.PubMedCrossRefGoogle Scholar
  16. Mottron, L., Mineau, S., Martel, G., St-Charles Bernier, C., Berthiaume, C., Dawson, M., et al. (2007). Lateral glances toward moving stimuli among young children with autism: Early regulation of locally oriented perception? Development and Psychopathology, 19, 23–26.PubMedCrossRefGoogle Scholar
  17. O’Riordan, M., & Plaisted, K. (2001). Enhanced discrimination in autism. The Quarterly Journal of Experimental Psychology A, 54, 961–979.Google Scholar
  18. Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak central coherence? Neuropsychologia, 43, 1044–1053.PubMedCrossRefGoogle Scholar
  19. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced visual search for a conjunctive target in autism: A research note. Journal of Child Psychology and Psychiatry and Allied Disciplines, 39, 777–783.CrossRefGoogle Scholar
  20. Rieke, F., & Baylor, D. A. (1998). Single-photon detection by rod cells of the retina. Reviews of Modern Physics, 70(3), 1027.CrossRefGoogle Scholar
  21. Ritvo, E. R., Creel, D., Crandall, A. S., Freeman, B. J., Pingree, C., Barr, R., et al. (1986). Retinal pathology in autistic children—A possible biomarker for a subtype? Journal of the American Academy of Child Psychiatry, 25, 137.PubMedCrossRefGoogle Scholar
  22. Ritvo, E. R., Creel, D., Realmuto, G., Crandall, A. S., Freeman, B. J., Bateman, J. B., et al. (1988). Electroretinograms in autism: A pilot study of b-wave amplitudes. Amercian Journal of Psychiatry, 145, 229–232.Google Scholar
  23. Rutherford, M. D., Richards, E. D., Moldes, V., & Sekuler, A. B. (2007). Evidence of a divided-attention advantage in autism. Cognitive Neuropsychology, 24, 505–515.PubMedCrossRefGoogle Scholar
  24. Schiller, P. H., & Malpeli, J. G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology, 41, 788–797.PubMedGoogle Scholar
  25. Schopler, E., Reichler, R. J., & Renner, B. R. (1988). The childhood autism rating scale. Los Angeles: Western Psychological Services.Google Scholar
  26. Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry and Allied Disciplines, 24, 613–620.CrossRefGoogle Scholar
  27. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. (2009). Vision in autism spectrum disorders. Vision Research, 49, 2705–2739.PubMedCrossRefGoogle Scholar
  28. Spencer, J., O’Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion processing in autism: Evidence for a dorsal stream deficiency. NeuroReport, 11, 2765–2767.PubMedCrossRefGoogle Scholar
  29. Stephen, J. M., Aine, C. J., Christner, R. F., Ranken, D., Huang, M., & Best, E. (2002). Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG. Vision Research, 42, 3059–3074.PubMedCrossRefGoogle Scholar
  30. Sylvester, R., Josephs, O., Driver, J., & Rees, G. (2007). Visual fMRI responses in human superior colliculus show a temporal–nasal asymmetry that is absent in the lateral geniculate and the visual cortex. Journal of Neurophysiology, 97, 1495–1502.PubMedCrossRefGoogle Scholar
  31. Townsend, J., Courchesne, E., & Egaas, B. (1996). Slowed orienting of covert visual-spatial attention in autism: Specific deficits associated with cerebellar and parietal abnormality. Development and Psychopathology, 8, 563–584.CrossRefGoogle Scholar
  32. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.Google Scholar
  33. White, S., & Saldaña, D. (2009). Performance of children with autism on the embedded figures test: a closer look at a popular task. Journal of Autism and Developmental Disorders, 41(11), 1565–1572.CrossRefGoogle Scholar
  34. Williams, D. (1996). Autism: An inside-out approach. London: Jessica Kingsley.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Elizabeth Milne
    • 1
  • Alison Scope
    • 1
    • 3
  • Helen Griffiths
    • 2
  • Charlotte Codina
    • 2
  • David Buckley
    • 2
  1. 1.Sheffield Autism Research Lab, Department of PsychologyWestern BankSheffieldUK
  2. 2.Academic Unit of Ophthalmology and OrthopticsSchool of Medicine and Biomedical SciencesSheffieldUK
  3. 3.HEDS, ScHARR, The University of SheffieldSheffieldUK

Personalised recommendations