Advertisement

Journal of Autism and Developmental Disorders

, Volume 43, Issue 5, pp 1106–1118 | Cite as

Autism Traits in Individuals with Agenesis of the Corpus Callosum

  • Yolanda C. Lau
  • Leighton B. N. Hinkley
  • Polina Bukshpun
  • Zoe A. Strominger
  • Mari L. J. Wakahiro
  • Simon Baron-Cohen
  • Carrie Allison
  • Bonnie Auyeung
  • Rita J. Jeremy
  • Srikantan S. Nagarajan
  • Elliott H. Sherr
  • Elysa J. Marco
Article

Abstract

Autism spectrum disorders (ASD) have numerous etiologies, including structural brain malformations such as agenesis of the corpus callosum (AgCC). We sought to directly measure the occurrence of autism traits in a cohort of individuals with AgCC and to investigate the neural underpinnings of this association. We screened a large AgCC cohort (n = 106) with the Autism Spectrum Quotient (AQ) and found that 45 % of children, 35 % of adolescents, and 18 % of adults exceeded the predetermined autism-screening cut-off. Interestingly, performance on the AQ’s imagination domain was inversely correlated with magnetoencephalography measures of resting-state functional connectivity in the right superior temporal gyrus. Individuals with AgCC should be screened for ASD and disorders of the corpus callosum should be considered in autism diagnostic evaluations as well.

Keywords

Agenesis of the corpus callosum Autism spectrum disorders Autism Spectrum Quotient Functional connectivity Magnetoencephalography Superior temporal gyrus 

Notes

Acknowledgments

This work was supported in part by NIH grants R01 DC004855, DC006435, DC010145, NS067962, NS64060, and by NSF grant BCS-0926196 to S.S.N, NIH grant K23 MH083890 to E.J.M., K02 NS052192 to E.H.S., KL2 RR024130 to E.J.M, E.H.S.), the Sandler Program for Breakthrough Biomedical Research (E.H.S.), the Simons Foundation (L.K.P), NARSAD (L.K.P.) and the Dystonia Medical Research Foundation (L.B.N.H.). This project was supported by NIH/NCRR UCSF-CTSI Grant Number UL1 RR024131. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. This project is made possible primarily through the efforts of our participants and their families.

References

  1. Adolphs, R., Sears, L., & Piven, J. (2001). Abnormal processing of social information from faces in autism. Journal of Cognitive Neuroscience, 13(2), 232–240.PubMedCrossRefGoogle Scholar
  2. Akiyama, T., Kato, M., Muramatsu, T., Saito, F., Nakachi, R., & Kashima, H. (2006). A deficit in discriminating gaze direction in a case with right superior temporal gyrus lesion. Neuropsychologia, 44(2), 161–170. doi: 10.1016/j.neuropsychologia.2005.05.018.PubMedCrossRefGoogle Scholar
  3. Alexander, A. L., Lee, J. E., Lazar, M., Boudos, R., DuBray, M. B., Oakes, T. R., et al. (2007). Diffusion tensor imaging of the corpus callosum in autism. Neuroimage, 34(1), 61–73. doi: 10.1016/j.neuroimage.2006.08.032.PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association. (2000). Diagnostic criteria from DSM-IV-TR. Washington, DC: American Psychiatric Association.Google Scholar
  5. Auyeung, B., Baron-Cohen, S., Wheelwright, S., & Allison, C. (2008). The Autism Spectrum Quotient: Children’s Version (AQ-Child). Journal of Autism and Developmental Disorders, 38(7), 1230–1240. doi: 10.1007/s10803-007-0504-z.PubMedCrossRefGoogle Scholar
  6. Badaruddin, D. H., Andrews, G. L., Bolte, S., Schilmoeller, K. J., Schilmoeller, G., Paul, L. K., et al. (2007). Social and behavioral problems of children with agenesis of the corpus callosum. Child Psychiatry and Human Development, 38(4), 287–302. doi: 10.1007/s10578-007-0065-6.PubMedCrossRefGoogle Scholar
  7. Bailey, D. B., Jr., Hatton, D. D., Skinner, M., & Mesibov, G. (2001). Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. Journal of Autism and Developmental Disorders, 31(2), 165–174.PubMedCrossRefGoogle Scholar
  8. Baron-Cohen, S., Hoekstra, R. A., Knickmeyer, R., & Wheelwright, S. (2006). The Autism-Spectrum Quotient (AQ)—Adolescent version. Journal of Autism and Developmental Disorders, 36(3), 343–350. doi: 10.1007/s10803-006-0073-6.PubMedCrossRefGoogle Scholar
  9. Baron-Cohen, S., Scahill, V. L., Izaguirre, J., Hornsey, H., & Robertson, M. M. (1999). The prevalence of Gilles de la Tourette syndrome in children and adolescents with autism: A large scale study. Psychological Medicine, 29(5), 1151–1159.PubMedCrossRefGoogle Scholar
  10. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17.PubMedCrossRefGoogle Scholar
  11. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. Journal of Neuroscience, 24(42), 9228–9231. doi: 10.1523/JNEUROSCI.3340-04.2004.PubMedCrossRefGoogle Scholar
  12. Bishop, S. L., & Seltzer, M. M. (2012). Self-reported autism symptoms in adults with autism spectrum disorders. Journal of Autism and Developmental Disorders,. doi: 10.1007/s10803-012-1483-2.Google Scholar
  13. Brown, W. S., & Paul, L. K. (2000). Cognitive and psychosocial deficits in agenesis of the corpus callosum with normal intelligence. Cognitive Neuropsychiatry, 5(2), 135–157.CrossRefGoogle Scholar
  14. Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17(9), 692–695.PubMedCrossRefGoogle Scholar
  15. Casanova, M. F., El-Baz, A., Mott, M., Mannheim, G., Hassan, H., Fahmi, R., et al. (2009). Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy. Journal of Autism and Developmental Disorders, 39(5), 751–764. doi: 10.1007/s10803-008-0681-4.PubMedCrossRefGoogle Scholar
  16. Cheng, Y., Chou, K. H., Chen, I. Y., Fan, Y. T., Decety, J., & Lin, C. P. (2010). Atypical development of white matter microstructure in adolescents with autism spectrum disorders. Neuroimage, 50(3), 873–882. doi: 10.1016/j.neuroimage.2010.01.011.PubMedCrossRefGoogle Scholar
  17. Constantino, J. N., & Todd, R. D. (2005). Intergenerational transmission of subthreshold autistic traits in the general population. Biological Psychiatry, 57(6), 655–660. doi: 10.1016/j.biopsych.2004.12.014.PubMedCrossRefGoogle Scholar
  18. Dalal, S. S., Guggisberg, A. G., Edwards, E., Sekihara, K., Findlay, A. M., Canolty, R. T., et al. (2008). Five-dimensional neuroimaging: localization of the time–frequency dynamics of cortical activity. Neuroimage, 40(4), 1686–1700. doi: 10.1016/j.neuroimage.2008.01.023.PubMedCrossRefGoogle Scholar
  19. Doherty, D., Tu, S., Schilmoeller, K., & Schilmoeller, G. (2006). Health-related issues in individuals with agenesis of the corpus callosum. Child: Care, Health and Development, 32(3), 333–342. doi: 10.1111/j.1365-2214.2006.00602.x.CrossRefGoogle Scholar
  20. Filipek, P. A., Accardo, P. J., Ashwal, S., Baranek, G. T., Cook, E. H., Jr., Dawson, G., et al. (2000). Practice parameter: Screening and diagnosis of autism: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology, 55(4), 468–479.PubMedCrossRefGoogle Scholar
  21. Frazier, T. W., & Hardan, A. Y. (2009). A meta-analysis of the corpus callosum in autism. Biological Psychiatry, 66(10), 935–941. doi: 10.1016/j.biopsych.2009.07.022.PubMedCrossRefGoogle Scholar
  22. Friauf, E., & Lohmann, C. (1999). Development of auditory brainstem circuitry. Activity-dependent and activity-independent processes. Cell and Tissue Research, 297(2), 187–195.PubMedCrossRefGoogle Scholar
  23. Glass, H. C., Shaw, G. M., Ma, C., & Sherr, E. H. (2008). Agenesis of the corpus callosum in California 1983–2003: A population-based study. American Journal of Medical Genetics. Part A, 146A(19), 2495–2500. doi: 10.1002/ajmg.a.32418.PubMedCrossRefGoogle Scholar
  24. Guggisberg, A. G., Honma, S. M., Findlay, A. M., Dalal, S. S., Kirsch, H. E., Berger, M. S., et al. (2008). Mapping functional connectivity in patients with brain lesions. Annals of Neurology, 63(2), 193–203. doi: 10.1002/ana.21224.PubMedCrossRefGoogle Scholar
  25. Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16(9), 1276–1282. doi: 10.1093/cercor/bhj069.PubMedCrossRefGoogle Scholar
  26. Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102. doi: 10.1001/archgenpsychiatry.2011.76.PubMedCrossRefGoogle Scholar
  27. Halpern, A. R., & Zatorre, R. J. (1999). When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies. Cerebral Cortex, 9(7), 697–704.PubMedCrossRefGoogle Scholar
  28. Hardan, A. Y., Pabalan, M., Gupta, N., Bansal, R., Melhem, N. M., Fedorov, S., et al. (2009). Corpus callosum volume in children with autism. Psychiatry Research, 174(1), 57–61. doi: 10.1016/j.pscychresns.2009.03.005.PubMedCrossRefGoogle Scholar
  29. Hatton, D. D., Sideris, J., Skinner, M., Mankowski, J., Bailey, D. B., Jr., Roberts, J., et al. (2006). Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. American Journal of Medical Genetics. Part A, 140A(17), 1804–1813. doi: 10.1002/ajmg.a.31286.PubMedCrossRefGoogle Scholar
  30. Hetts, S. W., Sherr, E. H., Chao, S., Gobuty, S., & Barkovich, A. J. (2006). Anomalies of the corpus callosum: An MR analysis of the phenotypic spectrum of associated malformations. AJR. American Journal of Roentgenology, 187(5), 1343–1348. doi: 10.2214/AJR.05.0146.PubMedCrossRefGoogle Scholar
  31. Hinkley, L. B., Vinogradov, S., Guggisberg, A. G., Fisher, M., Findlay, A. M., & Nagarajan, S. S. (2011). Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment. Biological Psychiatry, 70(12), 1134–1142. doi: 10.1016/j.biopsych.2011.06.029.PubMedCrossRefGoogle Scholar
  32. Hunt, A., & Shepherd, C. (1993). A prevalence study of autism in tuberous sclerosis. Journal of Autism and Developmental Disorders, 23(2), 323–339.PubMedCrossRefGoogle Scholar
  33. Hyde, K. L., Samson, F., Evans, A. C., & Mottron, L. (2010). Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Human Brain Mapping, 31(4), 556–566. doi: 10.1002/hbm.20887.PubMedGoogle Scholar
  34. Johnson, C. P., & Myers, S. M. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120(5), 1183–1215. doi: 10.1542/peds.2007-2361.PubMedCrossRefGoogle Scholar
  35. Jou, R. J., Minshew, N. J., Keshavan, M. S., Vitale, M. P., & Hardan, A. Y. (2010). Enlarged right superior temporal gyrus in children and adolescents with autism. Brain Research, 1360, 205–212. doi: 10.1016/j.brainres.2010.09.005.PubMedCrossRefGoogle Scholar
  36. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127(Pt 8), 1811–1821.Google Scholar
  37. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951–961. doi: 10.1093/cercor/bhl006.PubMedCrossRefGoogle Scholar
  38. Kanner, L. (1971). Follow-up study of eleven autistic children originally reported in 1943. Journal of Autism and Childhood Schizophrenia, 1(2), 119–145.PubMedCrossRefGoogle Scholar
  39. Keary, C. J., Minshew, N. J., Bansal, R., Goradia, D., Fedorov, S., Keshavan, M. S., et al. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39(6), 834–841. doi: 10.1007/s10803-009-0689-4.PubMedCrossRefGoogle Scholar
  40. Ketelaars, C., Horwitz, E., Sytema, S., Bos, J., Wiersma, D., Minderaa, R., et al. (2008). Brief report: adults with mild autism spectrum disorders (ASD): Scores on the autism spectrum quotient (AQ) and comorbid psychopathology. Journal of Autism and Developmental Disorders, 38(1), 176–180. doi: 10.1007/s10803-007-0358-4.PubMedCrossRefGoogle Scholar
  41. Kleinhans, N. M., Muller, R. A., Cohen, D. N., & Courchesne, E. (2008). Atypical functional lateralization of language in autism spectrum disorders. Brain Research, 1221, 115–125. doi: 10.1016/j.brainres.2008.04.080.PubMedCrossRefGoogle Scholar
  42. Kurita, H., Koyama, T., & Osada, H. (2005). Autism-Spectrum Quotient—Japanese version and its short forms for screening normally intelligent persons with pervasive developmental disorders. Psychiatry and Clinical Neurosciences, 59(4), 490–496. doi: 10.1111/j.1440-1819.2005.01403.x.PubMedCrossRefGoogle Scholar
  43. la Fougere, C., Zwergal, A., Rominger, A., Forster, S., Fesl, G., Dieterich, M., et al. (2010). Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison. Neuroimage, 50(4), 1589–1598. doi: 10.1016/j.neuroimage.2009.12.060.PubMedCrossRefGoogle Scholar
  44. Lukose, R., Schmidt, E., Wolski, T. P., Jr., Murawski, N. J., & Kulesza, R. J., Jr. (2011). Malformation of the superior olivary complex in an animal model of autism. Brain Research, 1398, 102–112. doi: 10.1016/j.brainres.2011.05.013.PubMedCrossRefGoogle Scholar
  45. Mason, R. A., Williams, D. L., Kana, R. K., Minshew, N., & Just, M. A. (2008). Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia, 46(1), 269–280. doi: 10.1016/j.neuropsychologia.2007.07.018.PubMedCrossRefGoogle Scholar
  46. Moes, P., Schilmoeller, K., & Schilmoeller, G. (2009). Physical, motor, sensory and developmental features associated with agenesis of the corpus callosum. Child: Care, Health and Development, 35(5), 656–672. doi: 10.1111/j.1365-2214.2009.00942.x.CrossRefGoogle Scholar
  47. Mottron, L., Peretz, I., & Menard, E. (2000). Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry, 41(8), 1057–1065.PubMedCrossRefGoogle Scholar
  48. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115(10), 2292–2307. doi: 10.1016/j.clinph.2004.04.029.PubMedCrossRefGoogle Scholar
  49. Paul, L. K. (2011). Developmental malformation of the corpus callosum: A review of typical callosal development and examples of developmental disorders with callosal involvement. Journal of Neurodevelopmental Disorders, 3(1), 3–27. doi: 10.1007/s11689-010-9059-y.PubMedCrossRefGoogle Scholar
  50. Paul, L. K., Brown, W. S., Adolphs, R., Tyszka, J. M., Richards, L. J., Mukherjee, P., et al. (2007). Agenesis of the corpus callosum: Genetic, developmental and functional aspects of connectivity. Nature Reviews Neuroscience, 8(4), 287–299. doi: 10.1038/nrn2107.PubMedCrossRefGoogle Scholar
  51. Paul, L. K., Lautzenhiser, A., Brown, W. S., Hart, A., Neumann, D., Spezio, M., et al. (2006). Emotional arousal in agenesis of the corpus callosum. International Journal of Psychophysiology, 61(1), 47–56. doi: 10.1016/j.ijpsycho.2005.10.017.PubMedCrossRefGoogle Scholar
  52. Paul, L. K., Schieffer, B., & Brown, W. S. (2004). Social processing deficits in agenesis of the corpus callosum: Narratives from the Thematic Appreciation Test. Archives of Clinical Neuropsychology, 19(2), 215–225. doi: 10.1016/S0887-6177(03)00024-6.PubMedCrossRefGoogle Scholar
  53. Paul, L. K., Van Lancker-Sidtis, D., Schieffer, B., Dietrich, R., & Brown, W. S. (2003). Communicative deficits in agenesis of the corpus callosum: Nonliteral language and affective prosody. Brain and Language, 85(2), 313–324.PubMedCrossRefGoogle Scholar
  54. Pickles, A., Starr, E., Kazak, S., Bolton, P., Papanikolaou, K., Bailey, A., et al. (2000). Variable expression of the autism broader phenotype: Findings from extended pedigrees. Journal of Child Psychology and Psychiatry, 41(4), 491–502.PubMedCrossRefGoogle Scholar
  55. Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: Evidence from a family history study of multiple-incidence autism families. American Journal of Psychiatry, 154(2), 185–190.PubMedGoogle Scholar
  56. Redcay, E. (2008). The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neuroscience and Biobehavioral Reviews, 32(1), 123–142. doi: 10.1016/j.neubiorev.2007.06.004.PubMedCrossRefGoogle Scholar
  57. Roberts, T. P., Cannon, K. M., Tavabi, K., Blaskey, L., Khan, S. Y., Monroe, J. F., et al. (2011). Auditory magnetic mismatch field latency: A biomarker for language impairment in autism. Biological Psychiatry, 70(3), 263–269. doi: 10.1016/j.biopsych.2011.01.015.PubMedCrossRefGoogle Scholar
  58. Roberts, T. P., Khan, S. Y., Rey, M., Monroe, J. F., Cannon, K., Blaskey, L., et al. (2010). MEG detection of delayed auditory evoked responses in autism spectrum disorders: Towards an imaging biomarker for autism. Autism Research, 3(1), 8–18. doi: 10.1002/aur.111.PubMedGoogle Scholar
  59. Robins, D. L., Fein, D., Barton, M. L., & Green, J. A. (2001). The Modified Checklist for Autism in Toddlers: An initial study investigating the early detection of autism and pervasive developmental disorders. Journal of Autism and Developmental Disorders, 31(2), 131–144.PubMedCrossRefGoogle Scholar
  60. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2(5), 255–267.PubMedCrossRefGoogle Scholar
  61. Rutter, M., Bailey, A., & Lord, C. (2003). Social Communication Questionnaire manual. Los Angeles: Western Psychological Services.Google Scholar
  62. Schilmoeller, G., Schilmoeller, K., & Doherty, D. (2004). Social interaction in individuals with and without a corpus callosum. Paper presented at the Journal of International Neuropsychology Society, Baltimore, MD.Google Scholar
  63. Sherr, E. H. (2003). The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): One gene leads to many phenotypes. Current Opinion in Pediatrics, 15(6), 567–571.PubMedCrossRefGoogle Scholar
  64. Sherr, E. H., Owen, R., Albertson, D. G., Pinkel, D., Cotter, P. D., Slavotinek, A. M., et al. (2005). Genomic microarray analysis identifies candidate loci in patients with corpus callosum anomalies. Neurology, 65(9), 1496–1498. doi: 10.1212/01.wnl.0000183066.09239.b6.PubMedCrossRefGoogle Scholar
  65. Shukla, D. K., Keehn, B., Lincoln, A. J., & Muller, R. A. (2010). White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(12), 1269–1278, 1278.e1–2. doi: 10.1016/j.jaac.2010.08.018.Google Scholar
  66. Shukla, D. K., Keehn, B., & Muller, R. A. (2011). Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 52(3), 286–295. doi: 10.1111/j.1469-7610.2010.02342.x.PubMedCrossRefGoogle Scholar
  67. Spence, S. J., & Schneider, M. T. (2009). The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatric Research, 65(6), 599–606. doi: 10.1203/01.pdr.0000352115.41382.65.PubMedCrossRefGoogle Scholar
  68. Stickles, J. L., Schilmoeller, G. L., & Kathyrn, J. (2002). A 23-year review of communication development in an individual with agenesis of the corpus callosum. International Journal of Disability, Development, and Education, 49(4), 367–383.CrossRefGoogle Scholar
  69. Symington, S. H., Paul, L. K., Symington, M. F., Ono, M., & Brown, W. S. (2010). Social cognition in individuals with agenesis of the corpus callosum. Social Neuroscience, 5(3), 296–308. doi: 10.1080/17470910903462419.PubMedCrossRefGoogle Scholar
  70. Thomas, C., Humphreys, K., Jung, K. J., Minshew, N., & Behrmann, M. (2010). The anatomy of the callosal and visual-association pathways in high-functioning autism: A DTI tractography study. Cortex, 47(7), 863–873. doi: 10.1016/j.cortex.2010.07.006.PubMedCrossRefGoogle Scholar
  71. Turk, A. A., Brown, W. S., Symington, M., & Paul, L. K. (2010). Social narratives in agenesis of the corpus callosum: linguistic analysis of the Thematic Apperception Test. Neuropsychologia, 48(1), 43–50. doi: 10.1016/j.neuropsychologia.2009.08.009.PubMedCrossRefGoogle Scholar
  72. Vingan, R. D., Dow-Edwards, D. L., & Riley, E. P. (1986). Cerebral metabolic alterations in rats following prenatal alcohol exposure: A deoxyglucose study. Alcoholism, Clinical and Experimental Research, 10(1), 22–26.PubMedCrossRefGoogle Scholar
  73. Virkud, Y. V., Todd, R. D., Abbacchi, A. M., Zhang, Y., & Constantino, J. N. (2009). Familial aggregation of quantitative autistic traits in multiplex versus simplex autism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 150B(3), 328–334. doi: 10.1002/ajmg.b.30810.CrossRefGoogle Scholar
  74. Weiss, L. A., Shen, Y., Korn, J. M., Arking, D. E., Miller, D. T., Fossdal, R., et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. New England Journal of Medicine, 358(7), 667–675. doi: 10.1056/NEJMoa075974.PubMedCrossRefGoogle Scholar
  75. Wheelwright, S., Auyeung, B., Allison, C., & Baron-Cohen, S. (2010). Defining the broader, medium and narrow autism phenotype among parents using the Autism Spectrum Quotient (AQ). Molecular Autism, 1(1), 10. doi: 10.1186/2040-2392-1-10.PubMedCrossRefGoogle Scholar
  76. Wicker, B., Perrett, D. I., Baron-Cohen, S., & Decety, J. (2003). Being the target of another’s emotion: A PET study. Neuropsychologia, 41(2), 139–146.PubMedCrossRefGoogle Scholar
  77. Williams, D. L., & Minshew, N. J. (2007). Understanding autism and related disorders: What has imaging taught us? Neuroimaging Clinics of North America, 17(4), 495–509. doi: 10.1016/j.nic.2007.07.007.PubMedCrossRefGoogle Scholar
  78. Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., et al. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry,. doi: 10.1176/appi.ajp.2011.11091447.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yolanda C. Lau
    • 1
  • Leighton B. N. Hinkley
    • 2
  • Polina Bukshpun
    • 3
  • Zoe A. Strominger
    • 6
  • Mari L. J. Wakahiro
    • 3
  • Simon Baron-Cohen
    • 4
  • Carrie Allison
    • 4
  • Bonnie Auyeung
    • 4
  • Rita J. Jeremy
    • 5
  • Srikantan S. Nagarajan
    • 2
  • Elliott H. Sherr
    • 3
  • Elysa J. Marco
    • 3
  1. 1.School of MedicineUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of NeurologyUniversity of California, San FranciscoSan FranciscoUSA
  4. 4.Department of Psychiatry, Autism Research CentreUniversity of CambridgeCambridgeUK
  5. 5.Pediatric Clinical Research Center, Clinical and Translational Science InstituteUniversity of California, San FranciscoSan FranciscoUSA
  6. 6.School of NursingUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations