Journal of Autism and Developmental Disorders

, Volume 43, Issue 2, pp 323–344 | Cite as

Motor Abilities in Autism: A Review Using a Computational Context

Original Paper

Abstract

Altered motor behaviour is commonly reported in Autism Spectrum Disorder, but the aetiology remains unclear. Here, we have taken a computational approach in order to break down motor control into different components and review the functioning of each process. Our findings suggest abnormalities in two areas—poor integration of information for efficient motor planning, and increased variability in basic sensory inputs and motor outputs. In contrast, motor learning processes are relatively intact and there is inconsistent evidence for deficits in predictive control. We suggest future work on motor abilities in autism should focus on sensorimotor noise and on higher level motor planning, as these seem to have a significant role in causing motor difficulties for autistic individuals.

Keywords

Autism Motor control Sensorimotor integration Prediction Motor learning 

References

  1. Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.PubMedGoogle Scholar
  2. Baranek, G. T., David, F. J., Poe, M. D., Stone, W. L., & Watson, L. R. (2006). Sensory Experiences Questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. Journal of Child Psychology and Psychiatry, 47, 591–601.PubMedCrossRefGoogle Scholar
  3. Barnes, K. A., Howard, J. H., Jr., Howard, D. V., Gilotty, L., Kenworthy, L., Gaillard, W. D., et al. (2008). Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. Neuropsychology, 22, 563–570.PubMedCrossRefGoogle Scholar
  4. Bastian, A. J. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 16, 645–649.PubMedCrossRefGoogle Scholar
  5. Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10, 258–264.PubMedCrossRefGoogle Scholar
  6. Beppu, H., Suda, M., & Tanaka, R. (1984). Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain, 107(Pt 3), 787–809.PubMedCrossRefGoogle Scholar
  7. Berstein, N. A. (1967). The coordination and regulation of movements Oxford. New York: Pergamon Press.Google Scholar
  8. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2003). Motion perception in autism: A “complex” issue. Journal of Cognitive Neuroscience, 15, 218–225.PubMedCrossRefGoogle Scholar
  9. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128, 2430–2441.PubMedCrossRefGoogle Scholar
  10. Binda, P., Bruno, A., Burr, D. C., & Morrone, M. C. (2007). Fusion of visual and auditory stimuli during saccades: A Bayesian explanation for perisaccadic distortions. Journal of Neuroscience, 27, 8525–8532.PubMedCrossRefGoogle Scholar
  11. Blaesi, S., & Wilson, M. (2010). The mirror reflects both ways: Action influences perception of others. Brain and Cognition, 72, 306–309.PubMedCrossRefGoogle Scholar
  12. Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. NeuroReport, 12, 1879–1884.PubMedCrossRefGoogle Scholar
  13. Blakemore, S. J., Tavassoli, T., Calo, S., Thomas, R. M., Catmur, C., Frith, U., et al. (2006). Tactile sensitivity in Asperger syndrome. Brain and Cognition, 61, 5–13.PubMedCrossRefGoogle Scholar
  14. Blakemore, S. J., Wolpert, D., & Frith, C. (2000). Why can’t you tickle yourself? NeuroReport, 11, R11–R16.PubMedCrossRefGoogle Scholar
  15. Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12, 201–208.PubMedCrossRefGoogle Scholar
  16. Boucher, J., & Lewis, V. (1992). Unfamiliar face recognition in relatively able autistic children. Journal of Child Psychology and Psychiatry, 33, 843–859.PubMedCrossRefGoogle Scholar
  17. Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., et al. (2008). Clinical assessment of autism in high-risk 18-month-olds. Autism, 12, 433–456.PubMedCrossRefGoogle Scholar
  18. Brown, J., Aczel, B., Jimenez, L., Kaufman, S. B., & Grant, K. P. (2010). Intact implicit learning in autism spectrum conditions. The Quarterly Journal of Experimental Psychology (Colchester.), 63, 1789–1812.CrossRefGoogle Scholar
  19. Caron, M. J., Mottron, L., Berthiaume, C., & Dawson, M. (2006). Cognitive mechanisms, specificity and neural underpinnings of visuospatial peaks in autism. Brain, 129, 1789–1802.PubMedCrossRefGoogle Scholar
  20. Cascio, C. J., Foss-Feig, J. H., Burnette, C. P., Heacock. J. L., Cosby, A. A. (2012) The rubber hand illusion in children with autism spectrum disorders: Delayed influence of combined tactile and visual input on proprioception. Autism (in press).Google Scholar
  21. Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K. A., et al. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38, 127–137.PubMedCrossRefGoogle Scholar
  22. Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., Cossu, G., et al. (2007). Impairment of actions chains in autism and its possible role in intention understanding. Proceedings of National Academy of Science USA, 104, 17825–17830.CrossRefGoogle Scholar
  23. Clearfield, M. W. (2011). Learning to walk changes infants’ social interactions. Infant Behavior and Development, 34, 15–25.PubMedCrossRefGoogle Scholar
  24. Cohen, R. G., & Rosenbaum, D. A. (2004). Where grasps are made reveals how grasps are planned: Generation and recall of motor plans. Experimental Brain Research, 157, 486–495.CrossRefGoogle Scholar
  25. Cook, J., Saygin, A. P., Swain, R., & Blakemore, S. J. (2009). Reduced sensitivity to minimum-jerk biological motion in autism spectrum conditions. Neuropsychologia, 47, 3275–3278.PubMedCrossRefGoogle Scholar
  26. Corbett, B. A., Constantine, L. J., Hendren, R., Rocke, D., & Ozonoff, S. (2009). Examining executive functioning in children with autism spectrum disorder, attention deficit hyperactivity disorder and typical development. Psychiatry Research, 166, 210–222.PubMedCrossRefGoogle Scholar
  27. Crane, L., Goddard, L., & Pring, L. (2009). Sensory processing in adults with autism spectrum disorders. Autism, 13, 215–228.PubMedCrossRefGoogle Scholar
  28. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48, 497–507.PubMedCrossRefGoogle Scholar
  29. d’Avella, A., & Bizzi, E. (2005). Shared and specific muscle synergies in natural motor behaviors. Proceedings of National Academy of Science USA, 102, 3076–3081.CrossRefGoogle Scholar
  30. David, F. J., Baranek, G. T., Giuliani, C. A., Mercer, V. S., Poe, M. D., & Thorpe, D. E. (2009). A pilot study: Coordination of precision grip in children and adolescents with high functioning autism. Pediatric Physical Therapy, 21, 205–211.PubMedCrossRefGoogle Scholar
  31. D'Cruz, A. M., Mosconi, M. W., Steels, S., Rubin, L. H., Luna, B., Minshew, N., et al. (2009). Lateralized response timing deficits in autism. Biological Psychiatry, 66(4), 393–397.Google Scholar
  32. de Jonge, M. V., Kemner, C., de Haan, E. H., Coppens, J. E., van den Berg, T. J., & van Engeland, H. (2007). Visual information processing in high-functioning individuals with autism spectrum disorders and their parents. Neuropsychology, 21, 65–73.PubMedCrossRefGoogle Scholar
  33. Denckla, M. B. (1985). Revised neurological examination for subtle signs. Psychopharmacology Bulletin, 21(4), 773–800.PubMedGoogle Scholar
  34. Dewey, D., Cantell, M., & Crawford, S. G. (2007). Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. Journal of International Neuropsycholy Society, 13, 246–256.Google Scholar
  35. Diedrichsen, J., Shadmehr, R., & Ivry, R. B. (2010). The coordination of movement: Optimal feedback control and beyond. Trends in Cognitive Sciences, 14, 31–39.PubMedCrossRefGoogle Scholar
  36. Dowell, L. R., Mahone, E. M., & Mostofsky, S. H. (2009). Associations of postural knowledge and basic motor skill with dyspraxia in autism: Implication for abnormalities in distributed connectivity and motor learning. Neuropsychology, 23(5), 563–570.PubMedCrossRefGoogle Scholar
  37. Dziuk, M. A., Gidley Larson, J. C., Apostu, A., Mahone, E. M., Denckla, M. B., & Mostofsky, S. H. (2007). Dyspraxia in autism: association with motor, social, and communicative deficits. Developmental Medicine and Child Neurology, 49, 734–739.PubMedCrossRefGoogle Scholar
  38. Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136, 1023–1044.PubMedCrossRefGoogle Scholar
  39. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.PubMedCrossRefGoogle Scholar
  40. Eskenazi, T., Grosjean, M., Humphreys, G. W., & Knoblich, G. (2009). The role of motor simulation in action perception: A neuropsychological case study. Psychological Research, 73, 477–485.PubMedCrossRefGoogle Scholar
  41. Esposito, G., Venuti, P., Maestro, S., & Muratori, F. (2009). An exploration of symmetry in early autism spectrum disorders: Analysis of lying. Brain and Development, 31, 131–138.PubMedCrossRefGoogle Scholar
  42. Fabbri-Destro, M., Cattaneo, L., Boria, S., & Rizzolatti, G. (2009). Planning actions in autism. Experimental Brain Research, 192, 521–525.CrossRefGoogle Scholar
  43. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381–391.PubMedCrossRefGoogle Scholar
  44. Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. Journal of Neuroscience, 17, 1519–1528.PubMedGoogle Scholar
  45. Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., et al. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203, 381–389.CrossRefGoogle Scholar
  46. Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40, 1227–1240.PubMedCrossRefGoogle Scholar
  47. Freitag, C. M., Kleser, C., Schneider, M., & von Gontard, A. (2007). Quantitative assessment of neuromotor function in adolescents with high functioning autism and asperger syndrome. Journal of Autism and Developmental Disorders, 37(5), 948–959.Google Scholar
  48. Freitag, C. M., Konrad, C., Haberlen, M., Kleser, C., von Gontard, A., Reith, W., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 1480–1496.PubMedCrossRefGoogle Scholar
  49. Fuentes, C. T., Mostofsky, S. H., & Bastian, A. J. (2011). No proprioceptive deficits in autism despite movement-related sensory and execution impairments. Journal of Autism and Developmental Disorders, 41(10), 1352–1361.PubMedCrossRefGoogle Scholar
  50. Gallese, V., Rochat, M., Cossu, G., & Sinigaglia, C. (2009). Motor cognition and its role in the phylogeny and ontogeny of action understanding. Developmental Psychology, 45(1), 103–313.PubMedCrossRefGoogle Scholar
  51. Gepner, B., Mestre, D., Masson, G., & de Schonen, S. (1995). Postural effects of motion vision in young autistic children. NeuroReport, 6, 1211–1214.PubMedCrossRefGoogle Scholar
  52. Gernsbacher, M. A., Sauer, E. A., Geye, H. M., Schweigert, E. K., & Hill, G. H. (2008). Infant and toddler oral- and manual-motor skills predict later speech fluency in autism. Journal of Child Psychology and Psychiatry, 49, 43–50.PubMedCrossRefGoogle Scholar
  53. Ghaziuddin, M., Butler, E., Tsai, L., & Ghaziuddin, N. (1994). Is clumsiness a marker for Asperger syndrome? Journal of Intellectual Disability Research, 38(Pt 5), 519–527.PubMedGoogle Scholar
  54. Gidley Larson, J. C., Bastian, A. J., Donchin, O., Shadmehr, R., & Mostofsky, S. H. (2008). Acquisition of internal models of motor tasks in children with autism. Brain, 131, 2894–2903.PubMedCrossRefGoogle Scholar
  55. Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control, 10, 244–264.PubMedGoogle Scholar
  56. Glazebrook, C. M., Elliott, D., & Szatmari, P. (2008). How do individuals with autism plan their movements? Journal of Autism and Developmental Disorders, 38, 114–126.PubMedCrossRefGoogle Scholar
  57. Glazebrook, C. M., Gonzalez, D., Hansen, S., & Elliott, D. (2009). The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism, 13(4), 411–433.PubMedCrossRefGoogle Scholar
  58. Gobet, F., Lane, P. C., Croker, S., Cheng, P. C., Jones, G., Oliver, I., et al. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243.PubMedCrossRefGoogle Scholar
  59. Goldberg, M. C., Lasker, A. G., Zee, D. S., Garth, E., Tien, A., & Landa, R. J. (2002). Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia, 40(12), 2039–2049.Google Scholar
  60. Gowen, E., & Miall, R. C. (2005). Behavioural aspects of cerebellar function in adults with Asperger syndrome. Cerebellum, 4, 279–289.PubMedCrossRefGoogle Scholar
  61. Grafton, S. T., & Hamilton, A. F. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.PubMedCrossRefGoogle Scholar
  62. Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136.PubMedCrossRefGoogle Scholar
  63. Green, D., Baird, G., Barnett, A. L., Henderson, L., Huber, J., & Henderson, S. E. (2002). The severity and nature of motor impairment in Asperger’s syndrome: A comparison with specific developmental disorder of motor function. Journal of Child Psychology and Psychiatry, 43, 655–668.PubMedCrossRefGoogle Scholar
  64. Haggard, P., Miall, R. C., Wade, D., Fowler, S., Richardson, A., Anslow, P., et al. (1995). Damage to cerebellocortical pathways after closed head injury: A behavioural and magnetic resonance imaging study. Journal of Neurology and Neurosurgery Psychiatry, 58, 433–438.CrossRefGoogle Scholar
  65. Hamilton, A. F. (2009). Research review: Goals, intentions and mental states: Challenges for theories of autism. Journal of Child Psychology and Psychiatry, 50(8), 881–892.PubMedCrossRefGoogle Scholar
  66. Hamilton, A. F., Brindley, R. M., & Frith, U. (2007). Imitation and action understanding in autistic spectrum disorders: How valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia, 45, 1859–1868.PubMedCrossRefGoogle Scholar
  67. Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.PubMedCrossRefGoogle Scholar
  68. Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.PubMedCrossRefGoogle Scholar
  69. Harrison, J., & Hare, D. J. (2004). Brief report: Assessment of sensory abnormalities in people with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 34, 727–730.PubMedCrossRefGoogle Scholar
  70. Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for sensorimotor learning and control. Neural Computation, 13, 2201–2220.PubMedCrossRefGoogle Scholar
  71. Haswell, C. C., Izawa, J., Dowell, L. R., Mostofsky, S. H., & Shadmehr, R. (2009). Representation of internal models of action in the autistic brain. Nature Neuroscience, 12, 970–972.PubMedCrossRefGoogle Scholar
  72. Henderson, S. E., & Sugden, D. A. (1992). Movement assessment battery for children. London: Psychological Corporation.Google Scholar
  73. Hermsdorfer, J., Wessel, K., Mai, N., & Marquardt, C. (1994). Perturbation of precision grip in Friedreich’s ataxia and late-onset cerebellar ataxia. Movement Disorders, 9, 650–654.PubMedCrossRefGoogle Scholar
  74. Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8, 26–32.PubMedCrossRefGoogle Scholar
  75. Hore, J., Watts, S., Tweed, D., & Miller, B. (1996). Overarm throws with the nondominant arm: Kinematics of accuracy. Journal of Neurophysiology, 76, 3693–3704.PubMedGoogle Scholar
  76. Hore, J., Wild, B., & Diener, H. C. (1991). Cerebellar dysmetria at the elbow, wrist, and fingers. Journal of Neurophysiology, 65, 563–571.PubMedGoogle Scholar
  77. Hughes, C. (1996). Brief report: Planning problems in autism at the level of motor control. Journal of Autism and Developmental Disorders, 26, 99–107.PubMedCrossRefGoogle Scholar
  78. Jansiewicz, E. M., Goldberg, M. C., Newschaffer, C. J., Denckla, M. B., Landa, R., & Mostofsky, S. H. (2006). Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. Journal of Autism and Developmental Disorders, 36, 613–621.PubMedCrossRefGoogle Scholar
  79. Jasmin, E., Couture, M., McKinley, P., Reid, G., Fombonne, E., & Gisel, E. (2009). Sensori-motor and daily living skills of preschool children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 231–241.PubMedCrossRefGoogle Scholar
  80. Jolliffe, T., & Baron-Cohen, S. (1997). Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? Journal of Child Psychology and Psychiatry, 38, 527–534.PubMedCrossRefGoogle Scholar
  81. Jones, K. E., Hamilton, A. F., & Wolpert, D. M. (2002). Sources of signal-dependent noise during isometric force production. Journal of Neurophysiology, 88, 1533–1544.PubMedCrossRefGoogle Scholar
  82. Jordan, M. I., & Wolpert, D. (1999). Computational motor control. In M. Gazzaniga (Ed.), The cognitive neurosciences. Cambridge, MA: MIT Press.Google Scholar
  83. Joseph, R. M., Keehn, B., Connolly, C., Wolfe, J. M., & Horowitz, T. S. (2009). Why is visual search superior in autism spectrum disorder? Developmental Science, 12, 1083–1096.PubMedCrossRefGoogle Scholar
  84. Kaiser, M. D., & Shiffrar, M. (2009). The visual perception of motion by observers with autism spectrum disorders: A review and synthesis. Psychonomic Bulletin and Review, 16, 761–777.PubMedCrossRefGoogle Scholar
  85. Kawato, M., Kuroda, T., & Imamizu, H. (2003). Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Progress in Brain Research, 142, 171–188.PubMedCrossRefGoogle Scholar
  86. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behaviour. Cambridge, MA: MIT Press.Google Scholar
  87. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & van Engeland, H. (1998). Abnormal saccadic eye movements in autistic children. Journal of Autism and Developmental Disorders, 28, 61–67.PubMedCrossRefGoogle Scholar
  88. Kern, J. K., Trivedi, M. H., Garver, C. R., Grannemann, B. D., Andrews, A. A., Savla, J. S., et al. (2006). The pattern of sensory processing abnormalities in autism. Autism, 10, 480–494.PubMedCrossRefGoogle Scholar
  89. Klin, A., Sparrow, S. S., de Bildt, A., Cicchetti, D. V., Cohen, D. J., & Volkmar, F. R. (1999). A normed study of face recognition in autism and related disorders. Journal of Autism and Developmental Disorders, 29, 499–508.PubMedCrossRefGoogle Scholar
  90. Kohen-Raz, R., Volkmar, F. R., & Cohen, D. J. (1992). Postural control in children with autism. Journal of Autism and Developmental Disorders, 22, 419–432.PubMedCrossRefGoogle Scholar
  91. Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The psychophysics of visual motion and global form processing in autism. Brain, 133, 599–610.PubMedCrossRefGoogle Scholar
  92. Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L., & Wallace, M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129.PubMedCrossRefGoogle Scholar
  93. Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research, 35, 389–412.PubMedCrossRefGoogle Scholar
  94. Largo, R. H., Fischer, J., & Caflish, J. (2002). Zürcher neuromotorik. Zürich: AWE-Verlag.Google Scholar
  95. Leary, M. R., & Hill, D. A. (1996). Moving on: Autism and movement disturbance. Mental Retardation, 34, 39–53.PubMedGoogle Scholar
  96. Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37, 894–910.PubMedCrossRefGoogle Scholar
  97. Luna, B., Doll, S. K., Hegedus, S. J., Minshew, N. J., & Sweeney, J. A. (2007). Maturation of executive function in autism. Biological Psychiatry, 61, 474–481.PubMedCrossRefGoogle Scholar
  98. Macneil, L. K., & Mostofsky, S. H. (2012). Specificity of dyspraxia in children with autism. Neuropsychology, 26, 165–171.PubMedCrossRefGoogle Scholar
  99. Manjiviona, J., & Prior, M. (1995). Comparison of Asperger syndrome and high-functioning autistic children on a test of motor impairment. Journal of Autism and Developmental Disorders, 25, 23–39.PubMedCrossRefGoogle Scholar
  100. Mari, M., Castiello, U., Marks, D., Marraffa, C., & Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London B Biological Science, 358, 393–403.CrossRefGoogle Scholar
  101. Martin, J. S., Poirier, M., & Bowler, D. M. (2010). Brief report: Impaired temporal reproduction performance in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 40, 640–646.PubMedCrossRefGoogle Scholar
  102. Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Network, 9(8), 1265–1279.CrossRefGoogle Scholar
  103. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43, 255–263.PubMedCrossRefGoogle Scholar
  104. Milne, E., White, S., Campbell, R., Swettenham, J., Hansen, P., & Ramus, F. (2006). Motion and form coherence detection in autistic spectrum disorder: Relationship to motor control and 2:4 digit ratio. Journal of Autism and Developmental Disorders, 36, 225–237.PubMedCrossRefGoogle Scholar
  105. Ming, X., Brimacombe, M., & Wagner, G. C. (2007). Prevalence of motor impairment in autism spectrum disorders. Brain and Development, 29, 565–570.PubMedCrossRefGoogle Scholar
  106. Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63, 2056–2061.PubMedCrossRefGoogle Scholar
  107. Miyahara, M., Tsujii, M., Hori, M., Nakanishi, K., Kageyama, H., & Sugiyama, T. (1997). Brief report: motor incoordination in children with Asperger syndrome and learning disabilities. Journal of Autism and Developmental Disorders, 27, 595–603.PubMedCrossRefGoogle Scholar
  108. Molloy, C. A., Dietrich, K. N., & Bhattacharya, A. (2003). Postural stability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 33, 643–652.PubMedCrossRefGoogle Scholar
  109. Mosconi, M. W., Kay, M., D'Cruz, A. M., Seidenfeld, A., Guter, S., Standford, L. D., et al. (2009). Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychological Medicine, 39(9), 1559–1566.Google Scholar
  110. Mostofsky, S. H., Bunoski, R., Morton, S. M., Goldberg, M. C., & Bastian, A. J. (2004). Children with autism adapt normally during a catching task requiring the cerebellum. Neurocase, 10, 60–64.PubMedCrossRefGoogle Scholar
  111. Mostofsky, S. H., Dubey, P., Jerath, V. K., Jansiewicz, E. M., Goldberg, M. C., & Denckla, M. B. (2006). Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. Journal of International Neuropsycholy Society, 12(3), 314–326.Google Scholar
  112. Mostofsky, S. H., Goldberg, M. C., Landa, R. J., & Denckla, M. B. (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: implications for cerebellar contribution. Journal of International Neuropsycholy Society, 6, 752–759.CrossRefGoogle Scholar
  113. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43.PubMedCrossRefGoogle Scholar
  114. Muller, F., & Dichgans, J. (1994). Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Experimental Brain Research, 101, 485–492.Google Scholar
  115. Nazarali, N., Glazebrook, C. M., & Elliott, D. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders, 39, 1401–1411.PubMedCrossRefGoogle Scholar
  116. Nemeth, D., Janacsek, K., Balogh, V., Londe, Z., Mingesz, R., Fazekas, M., et al. (2010). Learning in autism: Implicitly superb. PLoSOne, 5, e11731.Google Scholar
  117. Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32.CrossRefGoogle Scholar
  118. O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36, 665–675.PubMedCrossRefGoogle Scholar
  119. O’Riordan, M., & Plaisted, K. (2001). Enhanced discrimination in autism. The Quarterly Journal of Experimental Psychology A, 54, 961–979.Google Scholar
  120. O’Riordan, M. A., Plaisted, K. C., Driver, J., & Baron-Cohen, S. (2001). Superior visual search in autism. Journal of Experimental Psychology: Human Perception and Performance, 27, 719–730.PubMedCrossRefGoogle Scholar
  121. Osborne, L. C., Lisberger, S. G., & Bialek, W. (2005). A sensory source for motor variation. Nature, 437(7057), 412–416.PubMedCrossRefGoogle Scholar
  122. Ozonoff, S., Young, G. S., Goldring, S., Greiss-Hess, L., Herrera, A. M., Steele, J., et al. (2008). Gross motor development, movement abnormalities, and early identification of autism. Journal of Autism and Developmental Disorders, 38, 644–656.PubMedCrossRefGoogle Scholar
  123. Pan, C. Y., Tsai, C. L., & Chu, C. H. (2009). Fundamental movement skills in children diagnosed with autism spectrum disorders and attention deficit hyperactivity disorder. Journal of Autism and Developmental Disorders, 39(12), 1694–1705.PubMedCrossRefGoogle Scholar
  124. Pascolo, P. B., & Cattarinussi, A. (2012). On the relationship between mouth opening and “broken mirror neurons” in autistic individuals. Journal of Electromyography and Kinesiology, 22, 98–102.PubMedCrossRefGoogle Scholar
  125. Pellicano, E., & Gibson, L. Y. (2008). Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia, 46, 2593–2596.PubMedCrossRefGoogle Scholar
  126. Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43, 1044–1053.PubMedCrossRefGoogle Scholar
  127. Provost, B., Lopez, B. R., & Heimerl, S. (2007). A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental concerns. Journal of Autism and Developmental Disorders, 37, 321–328.PubMedCrossRefGoogle Scholar
  128. Rinehart, N. J., Bellgrove, M. A., Tonge, B. J., Brereton, A. V., Howells-Rankin, D., & Bradshaw, J. L. (2006a). An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: Further evidence for a motor planning deficit. Journal of Autism and Developmental Disorders, 36, 757–767.PubMedCrossRefGoogle Scholar
  129. Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. J. (2001). Movement preparation in high-functioning autism and Asperger disorder: A serial choice reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders, 31, 79–88.PubMedCrossRefGoogle Scholar
  130. Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., Iansek, R., Enticott, P. G., & McGinley, J. (2006b). Gait function in high-functioning autism and Asperger’s disorder: Evidence for basal-ganglia and cerebellar involvement? European Child and Adolescent Psychiatry, 15, 256–264.PubMedCrossRefGoogle Scholar
  131. Rosenbaum, D. A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology-General, 109(4), 444–474.Google Scholar
  132. Rosenbaum, D. A., Halloran, E. S., & Cohen, R. G. (2006). Grasping movement plans. Psychonomic Bulletin and Review, 13, 918–922.PubMedCrossRefGoogle Scholar
  133. Rosenbaum, D. A., Marchak, F., Barnes, H. J., Vaughan, J., Slotta, J. D., & Jorgensen, M. J. (1990). Constraints for action selection: Overhand versus underhand grips. In M. Jeannerod (Ed.), Attention and performance XIII (pp. 321–342). Hillsdale, NJ: Erlbaum.Google Scholar
  134. Sanger, T. D. (2003). Neural population codes. Current Opinion in Neurobiology, 13, 238–249.PubMedCrossRefGoogle Scholar
  135. Schmitz, C., Martineau, J., Barthelemy, C., & Assaiante, C. (2003). Motor control and children with autism: Deficit of anticipatory function? Neuroscience Letters, 348, 17–20.PubMedCrossRefGoogle Scholar
  136. Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185, 359–381.CrossRefGoogle Scholar
  137. Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108.PubMedCrossRefGoogle Scholar
  138. Shah, A., & Frith, U. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry, 34, 1351–1364.PubMedCrossRefGoogle Scholar
  139. Shams, L., Wozny, D. R., Kim, R., & Seitz, A. (2011). Influences of multisensory experience on subsequent unisensory processing. Frontiers in Psychology, 2, 264.PubMedCrossRefGoogle Scholar
  140. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49, 2705–2739.PubMedCrossRefGoogle Scholar
  141. Spence, C., Pavani, F., Maravita, A., & Holmes, N. (2004). Multisensory contributions to the 3-D representation of visuotactile peripersonal space in humans: evidence from the crossmodal congruency task. Journal of Physiology, 98, 171–189.PubMedGoogle Scholar
  142. Stanley-Cary, C., Rinehart, N., Tonge, B., White, O., & Fielding, J. (2011). Greater disruption to control of voluntary saccades in autistic disorder than Asperger’s disorder: Evidence for greater cerebellar involvement in autism? Cerebellum, 10, 70–80.PubMedCrossRefGoogle Scholar
  143. Staples, K. L., & Reid G. (2010). Fundamental movement skills and autism spectrum disorders. Journal of autism and Developmental Disorders, 40(2), 209–217.Google Scholar
  144. Sutera, S., Pandey, J., Esser, E. L., Rosenthal, M. A., Wilson, L. B., Barton, M., et al. (2007). Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37, 98–107.PubMedCrossRefGoogle Scholar
  145. Szelag, E., Kowalska, J., Galkowski, T., & Poppel, E. (2004). Temporal processing deficits in high-functioning children with autism. British Journal of Psychology, 95, 269–282.PubMedCrossRefGoogle Scholar
  146. Takarae, Y., Minshew, N. J., Luna, B., & Sweeney, J. A. (2004). Oculomotor abnormalities parallel cerebellar histopathology in autism. Neurology, Neurosurgery, and Psychiatry, 75, 1359–1361.CrossRefGoogle Scholar
  147. Taylor, N., Isaac, C., & Milne, E. (2010). A comparison of the development of audiovisual integration in children with autism spectrum disorders and typically developing children. Journal of Autism and Developmental Disorders, 40, 1403–1411.PubMedCrossRefGoogle Scholar
  148. Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J., & Maurer, R. G. (1998). Movement analysis in infancy may be useful for early diagnosis of autism. Proceedings of National Academy of Science USA, 95, 13982–13987.CrossRefGoogle Scholar
  149. Tommerdahl, M., Tannan, V., Cascio, C. J., Baranek, G. T., & Whitsel, B. L. (2007). Vibrotactile adaptation fails to enhance spatial localization in adults with autism. Brain Research, 1154, 116–123.PubMedCrossRefGoogle Scholar
  150. Tsermentseli, S., O’Brien, J. M., & Spencer, J. V. (2008). Comparison of form and motion coherence processing in autistic spectrum disorders and dyslexia. Journal of Autism and Developmental Disorders, 38(7), 1201–1210.PubMedCrossRefGoogle Scholar
  151. Ulrich, D. A. (2000). Test of gross motor development: Examiner’s manual (2nd ed.). Austin, TX: Pro-Ed.Google Scholar
  152. van Beers, R. J. (2007) The sources of variability in saccadic eye movements. Journal of Neuroscience, 27(33), 8757–8770.Google Scholar
  153. van der Smagt, M. J., van Engeland, H., & Kemner, C. (2007). Brief report: Can you see what is not there? Low-level auditory-visual integration in autism spectrum disorder. Journal of Autism and Developmental Disorders, 37(10), 2014–2019.PubMedCrossRefGoogle Scholar
  154. van Swieten, L. M., van Bergen, E., Williams, J. H., Wilson, A. D., Plumb, M. S., Kent, S. W., et al. (2010). A test of motor (not executive) planning in developmental coordination disorder and autism. Journal of Experimental Psychology: Human Perception and Performance, 36, 493–499.PubMedCrossRefGoogle Scholar
  155. Van Waelvelde, H., Oostra, A., Dewitte, G., Van Den Broeck, C., Jongmans, M. J. (2010). Stability of motor problems in young children with or at risk of autism spectrum disorders, ADHD, and or developmental coordination disorder. Developmental Medicine and Child Neurology, 52(8), e174–178.Google Scholar
  156. Vernazza-Martin, S., Martin, N., Vernazza, A., Lepellec-Muller, A., Rufo, M., Massion, J., et al. (2005). Goal directed locomotion and balance control in autistic children. Journal of Autism and Developmental Disorders, 35, 91–102.PubMedCrossRefGoogle Scholar
  157. Williams, J. H., Massaro, D. W., Peel, N. J., Bosseler, A., & Suddendorf, T. (2004a). Visual-auditory integration during speech imitation in autism. Research in Developmental Disabilities, 25, 559–575.PubMedCrossRefGoogle Scholar
  158. Williams, J., Thomas, P. R., Maruff, P., & Wilson, P. H. (2008). The link between motor impairment level and motor imagery ability in children with developmental coordination disorder. Human Movement Science, 27, 270–285.PubMedCrossRefGoogle Scholar
  159. Williams, J. H., Whiten, A., Singh, T. (2004b). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorder, 34(3), 285–299.Google Scholar
  160. Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460–473.PubMedCrossRefGoogle Scholar
  161. Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception and Psychophysics, 14, 5–12.CrossRefGoogle Scholar
  162. Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1, 209–216.PubMedCrossRefGoogle Scholar
  163. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London series B-Biological Sciences, 358(1431), 593–602.Google Scholar
  164. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729–R732.PubMedCrossRefGoogle Scholar
  165. Wolpert, D. M. & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nautre Neuroscience, 3(Suppl), 1212–1217.Google Scholar
  166. Wozny, D. R., & Shams, L. (2011). Computational characterization of visually induced auditory spatial adaptation. Frontiers in Integrative Neuroscience, 5, 75.PubMedCrossRefGoogle Scholar
  167. Young, R. P., & Zelaznik, H. N. (1992). The visual control of aimed hand movements to stationary and moving targets. Acta Psychologica (Amst), 79, 59–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Life SciencesUniversity of ManchesterManchesterUK
  2. 2.School of PsychologyUniversity of NottinghamNottinghamUK

Personalised recommendations