Journal of Autism and Developmental Disorders

, Volume 43, Issue 1, pp 68–79 | Cite as

A Common Susceptibility Factor of Both Autism and Epilepsy: Functional Deficiency of GABAA Receptors

Original Paper


Autism and epilepsy are common childhood neurological disorders with a great heterogeneity of clinical phenotypes as well as risk factors. There is a high co-morbidity of autism and epilepsy. The neuropathology of autism and epilepsy has similar histology implicating the processes of neurogenesis, neural migration, programmed cell death, and neurite outgrowth. Genetic advances have identified multiple molecules that participate in neural development, brain network connectivity, and synaptic function which are involved in the pathogenesis of autism and epilepsy. Mutations in GABAA receptor subunit have been frequently associated with epilepsy, autism, and other neuropsychiatric disorders. In this paper, we address the hypothesis that functional deficiency of GABAergic signaling is a potential common molecular mechanism underpinning the co-morbidity of autism and epilepsy.


Autism Epilepsy Co-morbidity GABAA receptor Brain development Synaptogenesis 


  1. Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.PubMedCrossRefGoogle Scholar
  2. Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry, 160(2), 262–273.PubMedCrossRefGoogle Scholar
  3. Andang, M., Hjerling-Leffler, J., et al. (2008). Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature, 451(7177), 460–464.PubMedCrossRefGoogle Scholar
  4. Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C., & Bassell, G. J. (2004). Metabotropic glutamate receptor activation regulates fragile × mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24(11), 2648–2655.PubMedCrossRefGoogle Scholar
  5. Ashley-Koch, A. E., Mei, H., et al. (2006). An analysis paradigm for investigating multi-locus effects in complex disease: Examination of three GABA receptor subunit genes on 15q11-q13 as risk factors for autistic disorder. Annals of Human Genetics, 70(Pt 3), 281–292.PubMedCrossRefGoogle Scholar
  6. Bailey, A., Le Couteur, A., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25(1), 63–77.PubMedCrossRefGoogle Scholar
  7. Baumann, S. W., Baur, R., et al. (2002). Forced subunit assembly in alpha1beta2gamma2 GABAA receptors. Insight into the absolute arrangement. Journal of Biological Chemistry, 277(48), 46020–46025.PubMedCrossRefGoogle Scholar
  8. Bear, M. F., Huber, K. M., et al. (2004). The mGluR theory of fragile × mental retardation. Trends in Neurosciences, 7, 370–377.CrossRefGoogle Scholar
  9. Behar, T. N., et al. (2000). GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cerebral Cortex, 10(9), 899–909.PubMedCrossRefGoogle Scholar
  10. Benbadis, S. R. (2005). The management of idiopathic generalized epilepsies. Acta Neurologica Scandinavica, 112(supp. 181), 63–67.CrossRefGoogle Scholar
  11. Berg, A. T., Plioplys, S., et al. (2011). Risk and correlates of autism spectrum disorders in children with epilepsy: A community based study. Journal of Child Neurology, 26(5), 540–547.PubMedCrossRefGoogle Scholar
  12. Bloss, C. S., & Courchesne, E. (2007). MRI neuroanatomy in young girls with autism: A preliminary study. Journal of the American Academy of Child and Adolescent Psychiatry, 46(4), 515–523.PubMedCrossRefGoogle Scholar
  13. Blumcke, I., Kistner, I., et al. (2009). Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathologica, 117(5), 535–544.PubMedCrossRefGoogle Scholar
  14. Brambilla, P., Hardan, A., et al. (2003). Brain anatomy and development in autism: Review of structural MRI studies. Brain Research Bulletin, 61(6), 557–569.PubMedCrossRefGoogle Scholar
  15. Brooks-Kayal, A. (2011). Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 52(Suppl 1), 13–20.PubMedCrossRefGoogle Scholar
  16. Buxbaum, J. D., Silverman, J. M., et al. (2002). Association between a GABRB3 polymorphism and autism. Molecular Psychiatry, 7(3), 311–316.PubMedCrossRefGoogle Scholar
  17. Cancedda, L., Fiumelli, H., et al. (2007). Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. Journal of Neuroscience, 27(19), 5224–5235.PubMedCrossRefGoogle Scholar
  18. Carmona-Mora, P., & Walz, K. (2010). Retinoic acid induced 1, RAI1: A dosage sensitive gene related to neurobehavioral alterations including autistic behavior. Current Genomics, 11(8), 607–617.PubMedCrossRefGoogle Scholar
  19. Chang, Y., Wang, R., et al. (1996). Stoichiometry of a recombinant GABAA receptor. Journal of Neuroscience, 16(17), 5415–5424.PubMedGoogle Scholar
  20. Chao, H. T., Chen, H., et al. (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321), 263–269.PubMedCrossRefGoogle Scholar
  21. Chiu, C., Reid, C. A., et al. (2008). Developmental impact of a familial GABAA receptor epilepsy mutation. Annals of Neurology, 64(3), 284–293.PubMedCrossRefGoogle Scholar
  22. Collins, A. L., Ma, D., et al. (2006). Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics, 7(3), 167–174.PubMedCrossRefGoogle Scholar
  23. Cook, E. H., Jr., Lindgren, V., et al. (1997). Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. American Journal of Human Genetics, 60(4), 928–934.PubMedGoogle Scholar
  24. Courchesne, E. (2002). Abnormal early brain development in autism. Molecular Psychiatry, 7(Suppl 2), S21–S23.PubMedCrossRefGoogle Scholar
  25. Courchesne, E., Carper, R., et al. (2003). Evidence of brain overgrowth in the first year of life in autism. JAMA, 290(3), 337–344.PubMedCrossRefGoogle Scholar
  26. Cuccaro, M. L., Tuchman, R. F., et al. (2011). Exploring the relationship between autism spectrum disorder and epilepsy using latent class cluster analysis. Journal of Autism and Developmental Disorders. [Epub ahead of print].Google Scholar
  27. Delahanty, R. J., Kang, J. Q., et al. (2011). Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism. Molecular Psychiatry, 16(1), 86–96.PubMedCrossRefGoogle Scholar
  28. Delong, R. (2007). GABA(A) receptor alpha5 subunit as a candidate gene for autism and bipolar disorder: A proposed endophenotype with parent-of-origin and gain-of-function features, with or without oculocutaneous albinism. Autism, 11(2), 135–147.PubMedCrossRefGoogle Scholar
  29. DeLorey, T. M., Handforth, A., et al. (1998). Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. Journal of Neuroscience, 18(20), 8505–8514.PubMedGoogle Scholar
  30. DeLorey, T. M., Sahbaie, P., et al. (2008). Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: A potential model of autism spectrum disorder. Behavioural Brain Research, 187(2), 207–220.PubMedCrossRefGoogle Scholar
  31. DeMyer, M. K. (1975). Research in infantile autism: A strategy and its results. Biological Psychiatry, 10(4), 433–452.PubMedGoogle Scholar
  32. Deykin, E. Y., & MacMahon, B. (1979). The incidence of seizures among children with autistic symptoms. American Journal of Psychiatry, 136(10), 1310–1312.PubMedGoogle Scholar
  33. D’Hulst, C., De Geest, N., et al. (2006). Decreased expression of the GABAA receptor in fragile × syndrome. Brain Research, 1121(1), 238–245.PubMedCrossRefGoogle Scholar
  34. Dibbens, L. M., Harkin, L. A., et al. (2009). The role of neuronal GABA(A) receptor subunit mutations in idiopathic generalized epilepsies. Neuroscience Letters, 453(3), 162–165.PubMedCrossRefGoogle Scholar
  35. Dölen, G., Osterweil, E., et al. (2007). Correction of fragile × syndrome in mice. Neuron, 56(6), 955–962.PubMedCrossRefGoogle Scholar
  36. Eagleson, K. L., Campbell, D. B., et al. (2011). The autism risk genes MET and PLAUR differentially impact cortical development. Autism Research, 4(1), 68–83.PubMedCrossRefGoogle Scholar
  37. Eagleson, K. L., Gravielle, M. C., et al. (2010). Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes. Neuroscience, 168(3), 797–810.PubMedCrossRefGoogle Scholar
  38. Escayg, A., De Waard, M., et al. (2000). Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. American Journal of Human Genetics, 66(5), 1531–1539.PubMedCrossRefGoogle Scholar
  39. Fagiolini, M., Fritschy, J. M., et al. (2004). Specific GABAA circuits for visual cortical plasticity. Science, 303(5664), 1681–1683.PubMedCrossRefGoogle Scholar
  40. Fastenau, P. S., et al. (2004). Neuropsychological predictors of academic underachievement in pediatric epilepsy: Moderating roles of demographic, seizure, and psychosocial variables. Epilepsia, 45, 1261–1272.PubMedCrossRefGoogle Scholar
  41. Fastenau, P. S., et al. (2009). Neuropsychological status at seizure onset in children: Risk factors for early cognitive deficits. Neurology, 73, 526–534.PubMedCrossRefGoogle Scholar
  42. Fatemi, S. H., Folsom, T. D., Kneeland, R. E., & Liesch, S. B. (2011). Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile × mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken), 294(10), 1635–1645.CrossRefGoogle Scholar
  43. Fatemi, S. H., Reutiman, T. J., et al. (2009). GABA(A) receptor downregulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39(2), 223–230.PubMedCrossRefGoogle Scholar
  44. Fatemi, S. H., Reutiman, T. J., et al. (2010). mRNA and Protein Levels for GABA(A)alpha4, alpha5, beta1 and GABA (B)R1 receptors are altered in brains from subjects with autism. Journal of Autism and Developmental Disorders, 40(6), 743–750.PubMedCrossRefGoogle Scholar
  45. Fu, C., Cawthon, B., et al. (2011). GABAergic interneuron development and function is modulated by the Tsc1 gene. Cereberal Cortex. doi:10.1093/cercor/bhr300.
  46. Gant, J. C., et al. (2009). Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia, 50(4), 629–645.PubMedCrossRefGoogle Scholar
  47. Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.PubMedCrossRefGoogle Scholar
  48. Glasscock, E., Qian, J., et al. (2007). Masking epilepsy by combining two epilepsy genes. Nature Neuroscience, 10(12), 1554–1558.PubMedCrossRefGoogle Scholar
  49. Goodkin, H. P., & Kapur, J. (2009). The impact of diazepam’s discovery on the treatment and understanding of status epilepticus. Epilepsia, 50(9), 2011–2018.PubMedCrossRefGoogle Scholar
  50. Hagerman, P. J., & Stafstrom, C. E. (2009). Origins of epilepsy in fragile × syndrome. Epilepsy Curr, 9, 108–112.PubMedCrossRefGoogle Scholar
  51. Hamiwka, L. D., & Wirrell, E. C. (2009). Comorbidities in pediatric epilepsy: Beyond “just’’ treating the seizures. Journal of Child Neurology, 24, 734–742.PubMedCrossRefGoogle Scholar
  52. Hauser, W. A. (1994). The prevalence and incidence of convulsive disorders in children. Epilepsia, 35(Suppl 2), S1–S6.PubMedCrossRefGoogle Scholar
  53. Hawkins, N. A., Martin, M. S., et al. (2011). Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiology of Diseases, 41(3), 655–660.CrossRefGoogle Scholar
  54. Hogart, A., Wu, D., et al. (2010). The comorbidity of autism with the genomic disorders of chromosome 15q11.2–q13. Neurobiology of Disease, 38(2):181–191 (Review).Google Scholar
  55. Hogart, A., et al. (2007). 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 16, 691–703.PubMedCrossRefGoogle Scholar
  56. Horsthemke, B., & Buiting, K. (2006). Imprinting defects on human chromosome 15. Cytogenetic and Genome Research, 113(1–4), 292–299.PubMedCrossRefGoogle Scholar
  57. Horsthemke, B., & Wagstaff, J. (2008). Mechanisms of imprinting of the Prader-Willi/Angelman region. American Journal of Medical Genetics Part A, 146A(16), 2041–2052.PubMedCrossRefGoogle Scholar
  58. Hughes, J. R., & Melyn, M. (2005). EEG and seizures in autistic children and adolescents: Further findings with therapeutic implications. Clinical EEG & Neuroscience Journal, 36(1), 15–20.CrossRefGoogle Scholar
  59. Jansen, L. A., Peugh, L. D., et al. (2010). Impaired maturation of cortical GABA(A) receptor expression in pediatric epilepsy. Epilepsia, 51(8), 1456–1467.PubMedCrossRefGoogle Scholar
  60. Kang, J. Q., & Macdonald, R. L. (2009). Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends in Molecular Medicine, 15(9), 430–438.PubMedCrossRefGoogle Scholar
  61. Knoll, J. H., et al. (1989). Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. American Journal of Medical Genetics, 32, 285–290.PubMedCrossRefGoogle Scholar
  62. Kuhlman, S. J., Lu, J., et al. (2010). Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways. PLoS Computational Biology, 6(6), e1000797.PubMedCrossRefGoogle Scholar
  63. Laurie, D. J., Wisden, W., et al. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. Journal of Neuroscience, 12(11), 4151–4172.PubMedGoogle Scholar
  64. Levitt, P., et al. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neurosciences, 27, 400–406.PubMedCrossRefGoogle Scholar
  65. Lewine, J. D., Andrews, R., et al. (1999). Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics, 104(3 Pt 1), 405–418.PubMedCrossRefGoogle Scholar
  66. Li, B. M., et al. (2011). Autism in Dravet syndrome: Prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy & Behavior, 21(3), 291–295.CrossRefGoogle Scholar
  67. Lotter, V. (1974). Factors related to outcome in autistic children. Journal of Autism and Schizophrenia, 4(3), 263–277.CrossRefGoogle Scholar
  68. Macdonald, R. L., Kang, J. Q., et al. (2010). Mutations in GABAA receptor subunits associated with genetic epilepsies. Journal of Physiology, 588(pt 11), 1861–1869.PubMedCrossRefGoogle Scholar
  69. Macdonald, R. L., & Olsen, R. W. (1994). GABAA receptor channels. Annual Review of Neuroscience, 17, 569–602.PubMedCrossRefGoogle Scholar
  70. Manent, J. B., Demarque, M., et al. (2005). A noncanonical release of GABA and glutamate modulates neuronal migration. Journal of Neuroscience, 25(19), 4755–4765.PubMedCrossRefGoogle Scholar
  71. Maric, D., Liu, Q. Y., et al. (2001). GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. The Journal of Neuroscience, 21(7), 2343–2360.PubMedGoogle Scholar
  72. Marrosu, F., Marrosu, G., et al. (1987). Paradoxical reactions elicited by diazepam in children with classic autism. Functional Neurology, 2(3), 355–361.PubMedGoogle Scholar
  73. McCall, M. A., Lukasiewicz, P. D., et al. (2002). Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina. Journal of Neuroscience, 22(10), 4163–4174.PubMedGoogle Scholar
  74. McCauley, J. L., Olson, L. M., et al. (2004). A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 131B(1), 51–59.CrossRefGoogle Scholar
  75. McVicar, K. A., et al. (2005). Epileptiform EEG abnormalities in children with language regression. Neurology, 65(1), 129–131.PubMedCrossRefGoogle Scholar
  76. Menold, M. M., Shao, Y., et al. (2001). Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. Journal of Neurogenetics, 15(3–4), 245–259.PubMedCrossRefGoogle Scholar
  77. Miano, S., & Ferri, R. (2010). Epidemiology and management of insomnia in children with autistic spectrum disorders. Paediatric Drugs, 12(2), 75–84.PubMedCrossRefGoogle Scholar
  78. Mori, T., Mori, K., et al. (2011). Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Developement. [Epub ahead of print].Google Scholar
  79. Numis, A. L., et al. (2011). Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology, 76(11), 981–987.PubMedCrossRefGoogle Scholar
  80. Oblak, A. L. et al. (2010). Reduced GABA(A) receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Research, 1380:218–228. [Epub 2010 Sep 19].Google Scholar
  81. Oblak, A., et al. (2009). Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Research, 2, 205–219.PubMedCrossRefGoogle Scholar
  82. O’Roak, B. J., & State, M. W. (2008). Autism genetics: Strategies, challenges, and opportunities. Autism Research, 1(1), 4–17.PubMedCrossRefGoogle Scholar
  83. Owens, D. F., & Kriegstein, A. R. (2002). Is there more to GABA than synaptic inhibition? Nature Reviews Neuroscience, 3(9), 715–727.PubMedCrossRefGoogle Scholar
  84. Polleux, F., & Lauder, J. M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 303–317.PubMedCrossRefGoogle Scholar
  85. Ponde, M. P., Novaes, C. M., et al. (2010). Frequency of symptoms of attention deficit and hyperactivity disorder in autistic children. Arquivos de Neuro-Psiquiatria, 68(1), 103–106.PubMedCrossRefGoogle Scholar
  86. Powell, E. M., et al. (2003). Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. Journal of Neuroscience, 23(2), 622–631.PubMedGoogle Scholar
  87. Represa, A., & Ben Ari, Y. (2005). Trophic actions of GABA on neuronal development. Trends in Neurosciences, 28(6), 278–283.PubMedCrossRefGoogle Scholar
  88. Rubenstein, J. L. (2010). Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Current Opinion in Neurology, 23, 118–123.PubMedCrossRefGoogle Scholar
  89. Samaco, R. C., Hogart, A., et al. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14(4), 483–492.PubMedCrossRefGoogle Scholar
  90. Sander, J. W., & Shorvon, S. D. (1996). Epidemiology of the epilepsies. Journal of Neurology, Neurosurgery and Psychiatry, 61, 433–443.CrossRefGoogle Scholar
  91. Sasaki, M., et al. (2010). Brain perfusion SPECT and EEG findings in children with autism spectrum disorders and medically intractable epilepsy. Brain Developement, 32(9), 776–782.CrossRefGoogle Scholar
  92. Schumann, C. M., Bloss, C. S., et al. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal of Neuroscience, 30(12), 4419–4427.PubMedCrossRefGoogle Scholar
  93. Schumann, C. M., Hamstra, J., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. Journal of Neuroscience, 24(28), 6392–6401.PubMedCrossRefGoogle Scholar
  94. Sisodiya, S. M., & Mefford, H. C. (2011). Genetic contribution to common epilepsies. Current Opinion in Neurology, 24(2), 140–145.PubMedCrossRefGoogle Scholar
  95. Smith, K. R., & Matson, J. L. (2010). Psychopathology: Differences among adults with intellectually disabled, comorbid autism spectrum disorders and epilepsy. Research in Developmental Disabilities, 31(3), 743–749.PubMedCrossRefGoogle Scholar
  96. Spence, S. J., & Schneider, M. T. (2009). The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatric Research, 65(6), 599–606.PubMedCrossRefGoogle Scholar
  97. Steinlein, O. K., & Bertrand, D. (2010). Nicotinic receptor channelopathies and epilepsy. Pflugers Archiv, 460(2), 495–503.PubMedCrossRefGoogle Scholar
  98. Suzuki, T., Delgado-Escueta, A. V., et al. (2004). Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nature Genetics, 36(8), 842–849.PubMedCrossRefGoogle Scholar
  99. Suzuki, T., Inoue, I., et al. (2008). Sequential expression of Efhc1/myoclonin1 in choroid plexus and ependymal cell cilia. Biochemical and Biophysical Research Communications, 367(1), 226–233.PubMedCrossRefGoogle Scholar
  100. Taylor, D. C., et al. (1999). Autistic spectrum disorders in childhood epilepsy surgery candidates. European Child and Adolescent Psychiatry, 8(3), 189–192.PubMedCrossRefGoogle Scholar
  101. Toering, S. T., Boer, K., et al. (2009). Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia, 50(6), 1409–1418.PubMedCrossRefGoogle Scholar
  102. Tuchman, R., Cuccaro, M., et al. (2010). Autism and epilepsy: Historical perspective. Brain Development, 32(9), 709–718.PubMedCrossRefGoogle Scholar
  103. Tuchman, R., & Rapin, I. (2002). Epilepsy in autism. Lancet Neurology, 1(6), 352–358.PubMedCrossRefGoogle Scholar
  104. Veenstra-VanderWeele, J., & Cook, E. H., Jr. (2004). Molecular genetics of autism spectrum disorder. Molecular Psychiatry, 9(9), 819–832.PubMedCrossRefGoogle Scholar
  105. Vincent, J. B., Horike, S. I., et al. (2006). An inversion inv(4)(p12-p15.3) in autistic siblings implicates the 4p GABA receptor gene cluster. Journal of Medical Genetics, 43(5), 429–434.PubMedCrossRefGoogle Scholar
  106. Wagstaff, J., Chaillet, J. R., et al. (1991). The GABAA receptor beta 3 subunit gene: Characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Genomics, 11(4), 1071–1078.PubMedCrossRefGoogle Scholar
  107. Wagstaff, J., Knoll, J. H., et al. (1992). Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genetics, 1(4), 291–294.PubMedCrossRefGoogle Scholar
  108. Wang, D. D., & Kriegstein, A. R. (2009). Defining the role of GABA in cortical development. Journal of Physiology, 587(Pt 9), 1873–1879.PubMedCrossRefGoogle Scholar
  109. Wang, D. D., & Kriegstein, A. R. (2011). Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cerebral Cortex, 21(3), 574–587.PubMedCrossRefGoogle Scholar
  110. Wegiel, J., Kuchna, I., et al. (2010). The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathologica, 119(6), 755–770.PubMedCrossRefGoogle Scholar
  111. Weiss, L. A. (2009). Autism genetics: Emerging data from genome-wide copy-number and single nucleotide polymorphism scans. Expert Review of Molecular Diagnostics, 9(8), 795–803.PubMedCrossRefGoogle Scholar
  112. Weiss, L. A., Arking, D. E., et al. (2009). A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461(7265), 802–808.PubMedCrossRefGoogle Scholar
  113. Weiss, L. A., Escayg, A., et al. (2003). Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Molecular Psychiatry, 8(2), 186–194.PubMedCrossRefGoogle Scholar
  114. White, R., Hua, Y., et al. (2001). Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Annals of Neurology, 49(1), 67–78.PubMedCrossRefGoogle Scholar
  115. Windpassinger, C., Kroisel, P. M., et al. (2002). The human gamma-aminobutyric acid A receptor delta (GABRD) gene: Molecular characterisation and tissue-specific expression. Gene, 292(1–2), 25–31.PubMedCrossRefGoogle Scholar
  116. Yoo, H. K., Chung, S., et al. (2009). Microsatellite marker in gamma—aminobutyric acid—a receptor beta 3 subunit gene and autism spectrum disorders in Korean trios. Yonsei Medical Journal, 50(2), 304–306.PubMedCrossRefGoogle Scholar
  117. Yu, F. H., Mantegazza, M., et al. (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neuroscience, 9(9), 1142–1149.PubMedCrossRefGoogle Scholar
  118. Zhou, Y. D., Lee, S., et al. (2009). Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nature Medicine, 15(10), 1208–1214.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of NeurologyVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of PediatricsVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations