Journal of Autism and Developmental Disorders

, Volume 42, Issue 12, pp 2569–2584 | Cite as

Microglia in the Cerebral Cortex in Autism

  • Nicole A. TetreaultEmail author
  • Atiya Y. Hakeem
  • Sue Jiang
  • Brian A. Williams
  • Elizabeth Allman
  • Barbara J. Wold
  • John M. Allman
Original Paper


We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had significantly more microglia compared to controls (p = 0.02). One such subject had a microglial density in FI within the control range and was also an outlier behaviorally with respect to other subjects with autism. In VC, microglial densities were also significantly greater in individuals with autism versus controls (p = 0.0002). Since we observed increased densities of microglia in two functionally and anatomically disparate cortical areas, we suggest that these immune cells are probably denser throughout cerebral cortex in brains of people with autism.


Microglia Autism Fronto-insular cortex Visual cortex 



This work was supported by grants from the Simons Foundation (SFARI #137661), the James S. McDonnell Foundation, and by NIH grant MH089406. The brain tissue and related anonymous phenotypic information was obtained from the NICHD Brain and Tissue Bank for Developmental Disorders. We especially thank Dr. Ronald Zielke, Robert Johnson and Melissa Davis for providing the brain tissue and anonymous clinical records; our study would not have been possible without their dedicated service. We thank the anonymous reviewers for their helpful comments and criticisms.


  1. Allman, J. M., Tetreault, N. A., Hakeem, A. Y., Manaye, K. F., Semendeferi, K., Erwin, J. M., et al. (2010). The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Structure and Function, 214, 495–517.PubMedCrossRefGoogle Scholar
  2. Allman, J., Watson, K., Tetreault, N., & Hakeem, A. (2005). Intuition and autism: A possible role for von Economo neurons. Trends in Cognitive Science, 9, 367–373.CrossRefGoogle Scholar
  3. Ashwood, P., Wills, S., & Van der Water, J. (2006). The immune response in autism: A new frontier for autism research. Journal of Leukocyte Biology, 80, 1–15.PubMedCrossRefGoogle Scholar
  4. Atladóttir, H. O., Thorsen, P., Østergaard, L., Schendel, D. E., Lemcke, S., Abdallah, M., et al. (2010). Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40, 1423–1430.PubMedCrossRefGoogle Scholar
  5. Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Science, 10, 258–264.CrossRefGoogle Scholar
  6. Bianchin, M. M., Capella, H. M., Chaves, D. L., Steindel, M., Grisard, E. C., Ganev, G. G., et al. (2004). Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy—PLOSL): A dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cellular and Molecular Neurobiology, 24, 1–24.PubMedCrossRefGoogle Scholar
  7. Blinzinger, K., & Kreutzberg, G. (1968). Displacement of synaptic terminals from regenerating motoneurons by Microglial cells. Zeitschrift für Zellforschung und Mikroscopische Anatomie, 85, 145–157.CrossRefGoogle Scholar
  8. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 4, 209–224.Google Scholar
  9. Carson, M. J., Bilousova, T. V., Puntambekar, S. S., Melchior, B., Doose, J. M., & Ethell, I. M. (2007). A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics, 4, 571–579.PubMedCrossRefGoogle Scholar
  10. Chen, S. K., Tvrdik, P., Peden, E., Cho, S., Wu, S., Spangrude, G., et al. (2010). Hematopoietic origin of pathological grooming in Hoxb8 mice. Cell, 141, 775–785.PubMedCrossRefGoogle Scholar
  11. Chez, M. G., & Guido-Estrada, N. (2010). Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics, 7, 293–301.PubMedCrossRefGoogle Scholar
  12. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15, 225–230.PubMedCrossRefGoogle Scholar
  13. Cullheim, S., & Thams, S. (2007). The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Research Reviews, 55, 89–96.PubMedCrossRefGoogle Scholar
  14. Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., et al. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752–758.PubMedCrossRefGoogle Scholar
  15. Dekaban, A. S. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345–356.PubMedCrossRefGoogle Scholar
  16. Di Martino, A., Ross, K., Uddin, L., Sklar, A., Castellanos, F., & Milham, M. (2009). Processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65, 63–74.PubMedCrossRefGoogle Scholar
  17. D’Mello, C., Le, T., & Swain, M. G. (2009). Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. Journal of Neuroscience, 29, 2089–2102.PubMedCrossRefGoogle Scholar
  18. Engel, S., Schluesener, H., Mittelbronn, M., Seid, K., Adjodah, D., Wehner, H. D., et al. (2000). Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathologica, 100, 313–322.PubMedCrossRefGoogle Scholar
  19. Exton, M. S. (1997). Infection-induced anorexia: Active host defense strategy. Appetite, 29, 369–383.PubMedCrossRefGoogle Scholar
  20. Frahm, H. D., Stephan, H., & Stephan, M. (1982). Comparison of brain structure volumes in Insectivora and Primates: I, neocortex. Journal für Hirnforschung, 23, 375–389.PubMedGoogle Scholar
  21. Frith, U. (2004). Is autism a disconnection disorder? Lancet Neurology, 3, 577.PubMedCrossRefGoogle Scholar
  22. Furhmann, M., Bittner, T., Jung, C., Burgold, S., Ochs, S. M., Hoffman, N., et al. (2010). Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nature Neuroscience, 13, 411–413.CrossRefGoogle Scholar
  23. Girard, S., Tremblay, L., Lepage, M., & Sébire, G. (2010). IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. Journal of Immunology, 184, 3997–4005.CrossRefGoogle Scholar
  24. Goldberg, W. A., Osann, K., Filipek, P. A., et al. (2003). Language and other regression: Assessment and timing. Journal of Autism and Developmental Disorders, 33, 607–616.PubMedCrossRefGoogle Scholar
  25. Goldman, S., Wang, C., Salgado, M. W., Greene, P. E., Kim, M., & Rapin, I. (2009). Motor stereotypies in children with autism and other developmental disorders. Developmental Medicine and Child Neurology, 51, 30–38.PubMedCrossRefGoogle Scholar
  26. Graeber, M. B., Bise, K., & Mehraein, P. (1993). Synaptic stripping in the human facial nucleus. Acta Neuropathologica, 86, 179–181.PubMedCrossRefGoogle Scholar
  27. Graeber, M. B., & Streit, W. J. (1990). Microglia: Immune network in the CNS. Brain Pathology, 1, 2–5.PubMedCrossRefGoogle Scholar
  28. Graeber, M. B., & Streit, W. J. (2010). Microglia: Biology and neuropathology. Acta Neuropathologica, 119, 89–105.PubMedCrossRefGoogle Scholar
  29. Graybiel, A. M., & Rauch, S. L. (2000). Toward a neurobiology of obsessive-compulsive disorder. Neuron, 28, 343–347.PubMedCrossRefGoogle Scholar
  30. Gundersen, H. J., Bendtsen, T. F., Korbo, L., Marcussen, N., Møller, A., Nielsen, K., et al. (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 96, 379–394.PubMedCrossRefGoogle Scholar
  31. Happe, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.PubMedCrossRefGoogle Scholar
  32. Hart, B. L. (1998). Biological basis of the behavior of sick animals. Neuroscience and Biobehavioral Reviews, 12, 123–137.CrossRefGoogle Scholar
  33. Hirasawa, T., Ohsawa, K., Imai, Y., Ondo, Y., Akazawa, C., Uchino, S., et al. (2005). Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. Journal of Neuroscience Research, 81, 357–362.PubMedCrossRefGoogle Scholar
  34. Imamoto, K., & Leblond, C. P. (1978). Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. Journal of Comparative Neurology, 180, 139–163.PubMedCrossRefGoogle Scholar
  35. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of under connectivity. Brain, 127, 1811–1821.PubMedCrossRefGoogle Scholar
  36. Kanner, L. (1968). Autistic disturbances of affective contact. Acta Paedopsychiatrica, 35, 100–136.PubMedGoogle Scholar
  37. Kreutzberg, G. W. (1996). Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.PubMedCrossRefGoogle Scholar
  38. Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207, 111–116.PubMedCrossRefGoogle Scholar
  39. Loane, D. J., & Byrnes, K. R. (2010). Role of microglia in neurotrauma. Neurotherapeutics, 7, 366–377.PubMedCrossRefGoogle Scholar
  40. Lyck, L., Santamaria, I. D., Pakkenberg, B., Chemnitz, J., Schrøder, H. D., Finsen, B., et al. (2009). An empirical analysis of the precision of estimating the numbers of neurons and glia in human neocortex using a fractionator-design with sub-sampling. Journal of Neuroscience Methods, 182, 143–156.PubMedCrossRefGoogle Scholar
  41. MacDonald, R., Green, G., Mansfield, R., Geckeler, A., Gardenier, N., Anderson, J., et al. (2007). Stereotypy in young children with autism and typically developing children. Research in Developmental Disabilities, 28, 266–277.PubMedCrossRefGoogle Scholar
  42. Matson, J. L., & Lovullo, S. V. (2008). A review of behavioral treatments for self-injurious behaviors of persons with autism spectrum disorders. Behavior Modification, 32, 61–76.PubMedCrossRefGoogle Scholar
  43. Minio-Paluello, I., Baron-Cohen, S., Avenanti, A., Walsh, V., & Aglioti, S. M. (2009). Absence of embodied empathy during pain observation in Asperger syndrome. Biological Psychiatry, 65, 55–62.PubMedCrossRefGoogle Scholar
  44. Mittelbronn, M., Dietz, K., Schluesener, H. J., & Meyeremann, R. (2001). Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathologica, 101, 249–255.PubMedGoogle Scholar
  45. Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376.PubMedCrossRefGoogle Scholar
  46. Neumann, H., & Takahashi, K. (2007). Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. Journal of Neuroimmunology, 184, 92–99.PubMedCrossRefGoogle Scholar
  47. Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–1318.PubMedCrossRefGoogle Scholar
  48. Paloneva, J., Manninen, T., Christman, G., Hovanes, K., Mandelin, J., Adolfsson, R., et al. (2002). Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. American Journal of Human Genetics, 71, 656–662.PubMedCrossRefGoogle Scholar
  49. Paolicelli R. C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. (2011) Synaptic pruning by microglia is necessary for normal brain development. Science, 333, 1456–1458. Epub 2011 Jul 21.Google Scholar
  50. Perry, V. H. (2010). Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathologica, 120, 277–286.PubMedCrossRefGoogle Scholar
  51. Santos, M., Uppal, N., Butti, C., Wicinski, B., Schmeidler, J., Giannakopolous, P., et al. (2011). Von Economo neurons in autism: a stereological study of frontoinsular cortex in children. Brain Research, 1380, 206–217.PubMedCrossRefGoogle Scholar
  52. Sasaki, Y., Ohsawa, K., Kanazawa, H., Kohsaka, S., & Imai, Y. (2001). Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochemical and Biophysical Research Communications, 286, 292–297.PubMedCrossRefGoogle Scholar
  53. Schmid, C. D., Melchior, B., Masek, K., Puntambekar, S. S., Danielson, P. E., Lo, D. D., et al. (2009). Differential gene expression LPS/IFNγ activated microglia and macrophages: In vitro versus in vivo. Journal of Neurochemistry, 109, 117–125.PubMedCrossRefGoogle Scholar
  54. Sessa, G., Podini, P., Mariani, M., Meroni, A., Spreafico, R., Sinigaglia, S., et al. (2004). Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. The European Journal of Neuroscience, 20, 2617–2628.PubMedCrossRefGoogle Scholar
  55. Simms, M. L., Kemper, T. L., Timbie, C. M., Bauman, M. L., & Blatt, G. J. (2009). The anterior cingulate cortex in autism: Heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathologica, 118, 673–684.PubMedCrossRefGoogle Scholar
  56. Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. The Journal of Neuroscience, 27, 10695–10702.PubMedCrossRefGoogle Scholar
  57. Streit, W. J., Braak, H., Xue, Q.-S., & Bechmann, I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 118, 475–485.PubMedCrossRefGoogle Scholar
  58. Tetreault, N. A., Williams, B. A., Hasenstaub, A., Hakeem, A. Y., Liu, M., Abelin, A. C. T., et al. (2009) RNA-Seq studies of gene expression in fronto-insular (FI) cortex in autistic and control stuides reveal gene networks related to inflammation and synaptic function. Program No. 437.3. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.Google Scholar
  59. Thomas, D. M., Francescutti-Verbeem, D. M., & Kuhn, D. M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. The FASEB Journal, 20, 515–517.Google Scholar
  60. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmermann, A. W., & Pardo, C. A. (2005). Neuroglial activtion and neuroinflammation in the brains of patients with autism. Annals of Neurology, 57, 67–81.PubMedCrossRefGoogle Scholar
  61. Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474, 380–384.PubMedCrossRefGoogle Scholar
  62. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S., & Nabekura, J. (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. The Journal of Neuroscience, 29, 3974–3980.PubMedCrossRefGoogle Scholar
  63. Walters, A. S., Barrett, R. P., Feinstein, C., Mercurio, A., & Hole, W. T. (1990). A case report of naltrexone treatment of self-injury and social withdrawal in autism. Journal of Autism and Developmental Disorders, 20, 169–176.PubMedCrossRefGoogle Scholar
  64. Wei, H., Zou, H., Sheikh, A. M., Malik, M., Dobkin, C., Brown, W. T., et al. (2011). IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. Journal of Neuroinflammation, 19(8), 52.CrossRefGoogle Scholar
  65. Zimmerman, A., Jyonouchi, H., Comi, A., Connors, S., Milstien, S., Varsou, A., et al. (2005). Cerebrospinal fluid and serum markers of inflammation in autism. Pediatric Neurology, 35, 195–201.CrossRefGoogle Scholar
  66. Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23, 143–152.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nicole A. Tetreault
    • 1
    Email author
  • Atiya Y. Hakeem
    • 1
  • Sue Jiang
    • 1
  • Brian A. Williams
    • 1
  • Elizabeth Allman
    • 2
  • Barbara J. Wold
    • 1
  • John M. Allman
    • 1
  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Comprehensive Autism CenterCarlsbadUSA

Personalised recommendations