Journal of Autism and Developmental Disorders

, Volume 42, Issue 11, pp 2312–2322 | Cite as

A Two-Year Longitudinal MRI Study of the Corpus Callosum in Autism

  • Thomas W. Frazier
  • Matcheri S. Keshavan
  • Nancy J. Minshew
  • Antonio Y. Hardan
Original Paper

Abstract

A growing body of literature has identified size reductions of the corpus callosum (CC) in autism. However, to our knowledge, no published studies have reported on the growth of CC volumes in youth with autism. Volumes of the total CC and its sub-divisions were obtained from 23 male children with autism and 23 age- and gender-matched controls at baseline and 2-year follow-up. Persistent reductions in total CC volume were observed in participants with autism relative to controls. Only the rostral body subdivision showed a normalization of size over time. Persistent reductions are consistent with the diagnostic stability and life-long impairment observed in many individuals with autism. Multi-modal imaging studies are needed to identify specific fiber tracks contributing to CC reductions.

Keywords

Magnetic resonance imaging Autism Corpus callosum Rostral body 

References

  1. Achenbach, T. M. (1991). Manual for the child behavior checklist/4-18 and 1991 profile. Burlington: University of Vermont, Department of Psychiatry.Google Scholar
  2. Alexander, A. L., Lee, J. E., Lazar, M., Boudos, R., DuBray, M. B., & Oakes, T. R. (2007). Diffusion tensor imaging of the corpus callosum in autism. Neuroimage, 34, 61–73.PubMedCrossRefGoogle Scholar
  3. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th edition, text revision ed.). Washington, DC: American Psychiatric Association.CrossRefGoogle Scholar
  5. Bailey, A., Luthert, P., Bolton, P., Le Couteur, A., Rutter, M., & Harding, B. (1993). Autism and megalencephaly. Lancet, 341(8854), 1225–1226. doi:0140-6736(93)91065-T.PubMedCrossRefGoogle Scholar
  6. Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., & Montgomery, M. (1998). A clinicopathological study of autism. Brain, 121(Pt 5), 889–905.PubMedCrossRefGoogle Scholar
  7. Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., & Reiss, A. L. (2004). White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biological Psychiatry, 55(3), 323–326. doi:S000632230301151X.PubMedCrossRefGoogle Scholar
  8. Bennetto, L., Pennington, B. F., & Rogers, S. J. (1996). Intact and impaired memory functions in autism. Child Development, 67(4), 1816–1835.PubMedCrossRefGoogle Scholar
  9. Billstedt, E., Gillberg, I. C., & Gillberg, C. (2005). Autism after adolescence: Population-based 13- to 22-year follow-up study of 120 individuals with autism diagnosed in childhood. Journal of Autism and Developmental Disorders, 35(3), 351–360.PubMedCrossRefGoogle Scholar
  10. Boger-Megiddo, I., Shaw, D. W., Friedman, S. D., Sparks, B. F., Artru, A. A., & Giedd, J. N. (2006). Corpus callosum morphometrics in young children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 36, 733–739.PubMedCrossRefGoogle Scholar
  11. Bolte, S., Dickhut, H., & Poustka, F. (1999). Patterns of parent-reported problems indicative in autism. Psychopathology, 32(2), 93–97. doi:psp32093.PubMedCrossRefGoogle Scholar
  12. Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., & Barale, F. (2003). Brain anatomy and development in autism: Review of structural MRI studies. Brain Research Bulletin, 61(6), 557–569. doi:S0361923003002235.PubMedCrossRefGoogle Scholar
  13. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.Google Scholar
  14. Charman, T., Taylor, E., Drew, A., Cockerill, H., Brown, J. A., & Baird, G. (2005). Outcome at 7 years of children diagnosed with autism at age 2: Predictive validity of assessments conducted at 2 and 3 years of age and pattern of symptom change over time. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46(5), 500–513. doi:10.1111/j.1469-7610.2004.00377.x.CrossRefGoogle Scholar
  15. Chung, M. K., Dalton, K. M., Alexander, A. L., & Davidson, R. J. (2004). Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage, 23, 242–251.PubMedCrossRefGoogle Scholar
  16. Cohen, J. (1987). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  17. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344.PubMedCrossRefGoogle Scholar
  18. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., & Tigue, Z. D. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMedCrossRefGoogle Scholar
  19. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230. doi:10.1016/j.conb.2005.03.001.PubMedCrossRefGoogle Scholar
  20. Dunn, W. (1999). Sensory profile. San Antonio, TX: Psychological Corporation.Google Scholar
  21. Eaves, L. C., & Ho, H. H. (2008). Young adult outcome of autism spectrum disorders. Journal of Autism and Developmental Disorders, 38(4), 739–747. doi:10.1007/s10803-007-0441-x.PubMedCrossRefGoogle Scholar
  22. Egaas, B., Courchesne, E., & Saitoh, O. (1995). Reduced size of corpus callosum in autism. Archives of Neurology, 52, 794–801.PubMedCrossRefGoogle Scholar
  23. Esbensen, A. J., Seltzer, M. M., Lam, K. S., & Bodfish, J. W. (2009). Age-related differences in restricted repetitive behaviors in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 57–66. doi:10.1007/s10803-008-0599-x.PubMedCrossRefGoogle Scholar
  24. Frazier, T. W., & Hardan, A. Y. (2009). A meta-analysis of the corpus callosum in autism. Biological Psychiatry, 66(10), 935–941. doi:10.1016/j.biopsych.2009.07.022.PubMedCrossRefGoogle Scholar
  25. Gallese, V. (2006). Intentional attunement: A neurophysiological perspective on social cognition and its disruption in autism. Brain Research, 1079(1), 15–24.PubMedCrossRefGoogle Scholar
  26. Gallese, V., Eagle, M. N., & Migone, P. (2007). Intentional attunement: Mirror neurons and the neural underpinnings of interpersonal relations. Journal of the American Psychoanalytic Association, 55(1), 131–176.PubMedGoogle Scholar
  27. Geschwind, D. (2007). Autism: Searching for coherence. Biological Psychiatry, 62, 949–950.PubMedCrossRefGoogle Scholar
  28. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., & Liu, H. (1999). Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 23(4), 571–588. doi:S0278584699000172.PubMedCrossRefGoogle Scholar
  29. Giedd, J. N., Lalonde, F. M., Celano, M. J., White, S. L., Wallace, G. L., & Lee, N. R. (2009). Anatomical brain magnetic resonance imaging of typically developing children and adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 48(5), 465–470. doi:10.1097/CHI.0b013e31819f2715.PubMedCrossRefGoogle Scholar
  30. Hardan, A. Y., Kilpatrick, M., Keshavan, M. S., & Minshew, N. J. (2003). Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. Journal of Child Neurology, 18(5), 317–324.PubMedCrossRefGoogle Scholar
  31. Hardan, A. Y., Libove, R. A., Keshavan, M. S., Melhem, N. M., & Minshew, N. J. (2009a). A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism. Biological Psychiatry, 66(4), 320–326. doi:10.1016/j.biopsych.2009.04.024.PubMedCrossRefGoogle Scholar
  32. Hardan, A. Y., Minshew, N. J., & Keshavan, M. S. (2000). Corpus callosum size in autism. Neurology, 55(7), 1033–1036.PubMedCrossRefGoogle Scholar
  33. Hardan, A. Y., Minshew, N. J., Mallikarjuhn, M., & Keshavan, M. S. (2001). Brain volume in autism. Journal of Child Neurology, 16(6), 421–424.PubMedGoogle Scholar
  34. Hardan, A. Y., Pabalan, M., Gupta, N., Bansal, R., Melhem, N. M., & Fedorov, S. (2009b). Corpus callosum volume in children with autism. Psychiatry Research, 174(1), 57–61. doi:10.1016/j.pscychresns.2009.03.005.PubMedCrossRefGoogle Scholar
  35. Hollingshead, A. (1975). Four factor index of social status. New Haven, CT: Yale University Department of Sociology.Google Scholar
  36. Howlin, P., Goode, S., Hutton, J., & Rutter, M. (2004). Adult outcome for children with autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(2), 212–229.CrossRefGoogle Scholar
  37. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951–961. doi:10.1093/cercor/bhl006.PubMedCrossRefGoogle Scholar
  38. Kanner, L. (1971). Follow-up study of eleven autistic children originally reported in 1943. Journal of Autism and Childhood Schizophrenia, 1(2), 119–145.PubMedCrossRefGoogle Scholar
  39. Keary, C. J., Minshew, N. J., Bansal, R., Goradia, D., Fedorov, S., & Keshavan, M. S. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39(6), 834–841. doi:10.1007/s10803-009-0689-4.PubMedCrossRefGoogle Scholar
  40. Keller, T. A., Kana, R. K., & Just, M. A. (2007). A developmental study of the structural integrity of white matter in autism. Neuroreport, 18(1), 23–27. doi:10.1097/01.wnr.0000239965.21685.99.PubMedCrossRefGoogle Scholar
  41. Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57(7), 645–652.PubMedCrossRefGoogle Scholar
  42. Kobayashi, R., Murata, T., & Yoshinaga, K. (1992). A follow-up study of 201 children with autism in Kyushu and Yamaguchi areas, Japan. Journal of Autism and Developmental Disorders, 22(3), 395–411.PubMedCrossRefGoogle Scholar
  43. Kreft, I. G. G. (1995). Hierarchical linear models: Problems and prospects. Journal of Educational and Behavioral Statistics, 20(2), 109–113.CrossRefGoogle Scholar
  44. Lainhart, J. E. (2003). Increased rate of head growth during infancy in autism. Journal of the American Medical Association, 290, 393–394.PubMedCrossRefGoogle Scholar
  45. Larson, J. C., & Mostofsky, S. H. (2006). Motor deficits in autism. In R. Tuchman & I. Rapin (Eds.), Autism: A neurological disorder of early brain development. London: Mac Keith Press.Google Scholar
  46. Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30(6), 718–729. doi:10.1016/j.neubiorev.2006.06.001.PubMedCrossRefGoogle Scholar
  47. Levitt, J. G., O’Neill, J., Blanton, R. E., Smalley, S., Fadale, D., & McCracken, J. T. (2003). Proton magnetic resonance spectroscopic imaging of the brain in childhood autism. Biological Psychiatry, 54(12), 1355–1366. doi:S0006322303006887.PubMedCrossRefGoogle Scholar
  48. Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2008). Autism from 2 to 9 years of age. Archives of General Psychiatry, 63, 694–701.CrossRefGoogle Scholar
  49. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (2002). Autism diagnostic observation schedule: ADOS manual. Los Angeles, CA: Western Psychological Services.Google Scholar
  50. Lotter, V. (1974). Social adjustment and placement of autistic children in Middlesex: A follow-up study. Journal of Autism and Childhood Schizophrenia, 4(1), 11–32.PubMedCrossRefGoogle Scholar
  51. Magnotta, V. A., Harris, G., Andreasen, N. C., O’Leary, D. S., Yuh, W. T., & Heckel, D. (2002). Structural MR image processing using the BRAINS2 toolbox. Computerized Medical Imaging and Graphics, 26(4), 251–264. doi:S0895611102000113.PubMedCrossRefGoogle Scholar
  52. Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., & Starkstein, S. E. (1999). An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. The Journal of Neuropsychiatry and Clinical Neurosciences, 11, 470–474.PubMedGoogle Scholar
  53. Mosconi, M. W., Cody-Hazlett, H., Poe, M. D., Gerig, G., Gimpel-Smith, R., & Piven, J. (2009). Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Archives of General Psychiatry, 66(5), 509–516. doi:10.1001/archgenpsychiatry.2009.19.PubMedCrossRefGoogle Scholar
  54. Nacewicz, B. M., Dalton, K. M., Johnstone, T., Long, M. T., McAuliff, E. M., & Oakes, T. R. (2006). Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Archives of General Psychiatry, 63(12), 1417–1428. doi:10.1001/archpsyc.63.12.1417.PubMedCrossRefGoogle Scholar
  55. Oberman, L. M., & Ramachandran, V. S. (2007). The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133(2), 310–327.PubMedCrossRefGoogle Scholar
  56. Ozonoff, S., & McEvoy, R. (1994). A longitudinal study of executive function and theory of mind development in autism. Development and Psychopathology, 6(3), 415–431.CrossRefGoogle Scholar
  57. Ozonoff, S., Pennington, B. F., & Rogers, S. J. (1991a). Executive function deficits in high-functioning autistic individuals: Relationship to theory of mind. Journal of Child Psychology and Psychiatry and Allied Disciplines, 32(7), 1081–1105.CrossRefGoogle Scholar
  58. Ozonoff, S., Rogers, S. J., & Pennington, B. F. (1991b). Asperger’s Syndrome: Evidence of an empirical distinction from high-functioning autism. Journal of Child Psychology and Psychiatry, 32(7), 1107–1122.PubMedCrossRefGoogle Scholar
  59. Pardo, C. A., & Eberhart, C. G. (2007). The neurobiology of autism. Brain Pathology, 17(4), 434–447. doi:10.1111/j.1750-3639.2007.00102.x.PubMedCrossRefGoogle Scholar
  60. Peugh, J. L., & Enders, C. K. (2005). Using the SPSS mixed procedure to fit cross-sectional and longitudinal multilevel models. Educational and Psychological Measurement, 65(5), 717–741.CrossRefGoogle Scholar
  61. Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. The American Journal of Psychiatry, 152(8), 1145–1149.PubMedGoogle Scholar
  62. Piven, J., Bailey, J., Ranson, B. J., & Arndt, S. (1997). An MRI study of the corpus callosum in autism. American Journal of Psychiatry, 154(8), 1051–1056.PubMedGoogle Scholar
  63. Piven, J., Harper, J., Palmer, P., & Arndt, S. (1996). Course of behavioral change in autism: A retrospective study of high-IQ adolescents and adults. Journal of the American Academy of Child and Adolescent Psychiatry, 35(4), 523–529.PubMedCrossRefGoogle Scholar
  64. Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58(1), 1–9. doi:10.1016/j.biopsych.2005.03.026.PubMedCrossRefGoogle Scholar
  65. Rosenthal, R. (1991). Meta-analytic procedures for social research, Vol. 6. Newbury Park, CA: Sage Publications.Google Scholar
  66. Rutter, M. (1967). The autistic child. Royal Institute of Public Health and Hygiene Journal, 30(4), 130–132.PubMedGoogle Scholar
  67. Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interview-revised manual. Los Angeles: Western Psychological Services.Google Scholar
  68. Schumann, C. M., Barnes, C. C., Lord, C., & Courchesne, E. (2009). Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biological Psychiatry, 66(10), 942–949. doi:10.1016/j.biopsych.2009.07.007.PubMedCrossRefGoogle Scholar
  69. Seltzer, M. M., Krauss, M. W., Shattuck, P. T., Orsmond, G., Swe, A., & Lord, C. (2003). The symptoms of autism spectrum disorders in adolescence and adulthood. Journal of Autism and Developmental Disorders, 33(6), 565–581.PubMedCrossRefGoogle Scholar
  70. Spencer, M. D., Moorhead, W. J., Lymer, K. S., Job, D. E., Muir, W. J., & Hoare, P. (2006). Structural correlates of intellectual impairment and autistic features in adolescents. Neuroimage, 33, 1136–1144.PubMedCrossRefGoogle Scholar
  71. Spiker, D., Lotspeich, L. J., Dimiceli, S., Myers, R. M., & Risch, N. (2002). Behavioral phenotypic variation in autism multiplex families: Evidence for a continuous severity gradient. American Journal of Medical Genetics, 114(2), 129–136. doi:10.1002/ajmg.10188.PubMedCrossRefGoogle Scholar
  72. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging. New York: Thieme Medical Publishers.Google Scholar
  73. Tepest, R., Jacobi, E., Gawronski, A., Krug, B., Moller-Hartmann, W., & Lehnhardt, F. G. (2010). Corpus callosum size in adults with high-functioning autism and the relevance of gender. Psychiatry Research, 183(1), 38–43. doi:10.1016/j.pscychresns.2010.04.007.PubMedCrossRefGoogle Scholar
  74. Vidal, C. N., Nicolson, R., DeVito, T. J., Hayashi, K. M., Geaga, J. A., & Drost, D. J. (2006). Mapping corpus callosum deficits in autism: An index of aberrant cortical connectivity. Biological Psychiatry, 60, 218–225.PubMedCrossRefGoogle Scholar
  75. Waiter, G. D., Williams, J. H., Murray, A. D., Gilchrist, A., Perrett, D. I., & Whiten, A. (2005). Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: A voxel-based investigation. Neuroimage, 24(2), 455–461. doi:10.1016/j.neuroimage.2004.08.049.PubMedCrossRefGoogle Scholar
  76. White, T., Andreasen, N. C., Nopoulos, P., & Magnotta, V. (2003). Gyrification abnormalities in childhood- and adolescent-onset schizophrenia. Biological Psychiatry, 54(4), 418–426. doi:S0006322303000659.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thomas W. Frazier
    • 1
  • Matcheri S. Keshavan
    • 2
  • Nancy J. Minshew
    • 3
  • Antonio Y. Hardan
    • 4
  1. 1.Center for Autism (CRS10) and Pediatric Behavioral HealthCleveland ClinicClevelandUSA
  2. 2.Department of Psychiatry, Beth Israel and Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  3. 3.Western Psychiatric Institute and ClinicUniversity of Pittsburgh School of MedicinePittsburghUSA
  4. 4.Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordUSA

Personalised recommendations