Journal of Autism and Developmental Disorders

, Volume 42, Issue 9, pp 1870–1883 | Cite as

The Rubber Hand Illusion Reveals Proprioceptive and Sensorimotor Differences in Autism Spectrum Disorders

  • Bryan Paton
  • Jakob Hohwy
  • Peter G. Enticott
Original paper


Autism spectrum disorder (ASD) is characterised by differences in unimodal and multimodal sensory and proprioceptive processing, with complex biases towards local over global processing. Many of these elements are implicated in versions of the rubber hand illusion (RHI), which were therefore studied in high-functioning individuals with ASD and a typically developing control group. Both groups experienced the illusion. A number of differences were found, related to proprioception and sensorimotor processes. The ASD group showed reduced sensitivity to visuotactile-proprioceptive discrepancy but more accurate proprioception. This group also differed on acceleration in subsequent reach trials. Results are discussed in terms of weak top-down integration and precision-accuracy trade-offs. The RHI appears to be a useful tool for investigating multisensory processing in ASD.


High-functioning autism spectrum disorder Rubber hand illusion Multimodal sensory integration Local processing bias 



This research was supported by Australian Research Council Grants DP0984572 and FT100100322, and a Monash University Research Accelerator Grant to JH; PGE is supported by a National Health and Medical Research Council Clinical Research Fellowship (546244). The authors wish to thank Amity Green for assistance with data collection and Uta Frith for helpful advice and comments.

Supplementary material

10803_2011_1430_MOESM1_ESM.eps (274 kb)
Ratings for statements each of S1-3 during synchronous and asynchronous touch (EPS 273 kb)


  1. Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.PubMedGoogle Scholar
  2. Armel, K. C., & Ramachandran, V. S. (2003). Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London Series B: Biological Sciences, 270(1523), 1499–1506. doi: 10.1098/rspb.2003.2364.PubMedCrossRefGoogle Scholar
  3. Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163–175.PubMedCrossRefGoogle Scholar
  4. Bays, P. M., & Wolpert, D. M. (2007). Computational principles of sensorimotor control that minimize uncertainty and variability. The Journal of Physiology, 578(2), 387–396. doi: 10.1113/jphysiol.2006.120121.PubMedCrossRefGoogle Scholar
  5. Bebko, J. M., Weiss, J. A., Demark, J. L., & Gomez, P. (2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47(1), 88–98. doi: 10.1111/j.1469-7610.2005.01443.x.PubMedCrossRefGoogle Scholar
  6. Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 1–11. doi: 10.1007/s10803-008-0593-3.PubMedCrossRefGoogle Scholar
  7. Bölte, S., Holtmann, M., Poustka, F., Scheurich, A., & Schmidt, L. (2007). Gestalt perception and local-global processing in high-functioning autism. Journal of Autism and Developmental Disorders, 37(8), 1493–1504. doi: 10.1007/s10803-006-0231-x.PubMedCrossRefGoogle Scholar
  8. Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A.-M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235. doi: 10.1162/089892903321208169.PubMedCrossRefGoogle Scholar
  9. Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391(6669), 756.PubMedCrossRefGoogle Scholar
  10. Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K., et al. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38(1), 127–137. doi: 10.1007/s10803-007-0370-8.PubMedCrossRefGoogle Scholar
  11. Chong, T. W. H., & Castle, D. J. (2004). Layer upon layer: thermoregulation in schizophrenia. Schizophrenia Research, 69(2–3), 149–157. doi: 10.1016/S0920-9964(03)00222-6.PubMedCrossRefGoogle Scholar
  12. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507. doi: 10.1016/j.neuron.2005.10.018.PubMedCrossRefGoogle Scholar
  13. Desmurget, M., Vindras, P., Gréa, H., Viviani, P., & Grafton, S. T. (2000). Proprioception does not quickly drift during visual occlusion. Experimental Brain Research, 134(3), 363–377.CrossRefGoogle Scholar
  14. Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science, 317(5841), 1048. doi: 10.1126/science.1142175.PubMedCrossRefGoogle Scholar
  15. Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305(5685), 875–877.PubMedCrossRefGoogle Scholar
  16. Enticott, P. G., Kennedy, H. A., Bradshaw, J. L., Rinehart, N. J., & Fitzgerald, P. B. (2010). Understanding mirror neurons: Evidence for enhanced corticospinal excitability during the observation of transitive but not intransitive hand gestures. Neuropsychologia, 48(9), 2675–2680. doi: 10.1016/j.neuropsychologia.2010.05.014.PubMedCrossRefGoogle Scholar
  17. Enticott, P. G., Kennedy, H. A., Rinehart, N. J., Tonge, B. J. Bradshaw, J. L., Taffe, J. R., et al. (in press). Mirror neuron activity associated with social impairments but not age in autism spectrum disorder. Biological Psychiatry. doi: 10.1016/j.biopsych.2011.09.001.
  18. Ernst, M., & Banks, M. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.Google Scholar
  19. Fiorio, M., Weise, D., Önal-Hartmann, C., Zeller, D., Tinazzi, M., & Classen, J. (2011). Impairment of the rubber hand illusion in focal hand dystonia. Brain, 134(5), 1428–1437. doi: 10.1093/brain/awr026.PubMedCrossRefGoogle Scholar
  20. Foss-Feig, J., Kwakye, L., Cascio, C., Burnette, C., Kadivar, H., Stone, W., et al. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381–389. doi: 10.1007/s00221-010-2240-4.CrossRefGoogle Scholar
  21. Frith, U. (1989). Autism: Explaining the enigma. Oxford: Blackwell.Google Scholar
  22. Fuentes, C., Mostofsky, S., & Bastian, A. (2010). No proprioceptive deficits in autism despite movement-related sensory and execution impairments. Journal of Autism and Developmental Disorders, 41(10), 1352–1361.Google Scholar
  23. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.PubMedCrossRefGoogle Scholar
  24. Gepner, B., & Mestre, D. R. (2002). Brief report: Postural reactivity to fast visual motion differentiates autistic from children with Asperger syndrome. Journal of Autism and Developmental Disorders, 32(3), 231–238. doi: 10.1023/a:1015410015859.PubMedCrossRefGoogle Scholar
  25. Gepner, B., Mestre, D., Masson, G., & de Schonen, S. (1995). Postural effects of motion vision in young autistic children. NeuroReport, 6(8), 1211–1214.PubMedCrossRefGoogle Scholar
  26. Giummarra, M. J., Gibson, S. J., Georgiou-Karistianis, N., & Bradshaw, J. L. (2008). Mechanisms underlying embodiment, disembodiment and loss of embodiment. Neuroscience and Biobehavioral Reviews, 32(1), 143–160. doi: 10.1016/j.neubiorev.2007.07.001.PubMedCrossRefGoogle Scholar
  27. Gross, Y., & Melzack, R. (1978). Body image: Dissociation of real and perceived limbs by pressure-cuff ischemia. Experimental Neurology, 61(3), 680–688. doi: 10.1016/0014-4886(78)90032-8.PubMedCrossRefGoogle Scholar
  28. Gross, Y., Webb, R., & Melzack, R. (1974). Central and peripheral contributions to localization of body parts: Evidence for a central body schema. Experimental Neurology, 44(3), 346–362. doi: 10.1016/0014-4886(74)90201-5.PubMedCrossRefGoogle Scholar
  29. Guterstam, A., Petkova, V. I., & Ehrsson, H. H. (2011). The illusion of owning a third arm. PloS One, 6(2), e17208.PubMedCrossRefGoogle Scholar
  30. Haans, A., Ijsselsteijn, W. A., & de Kort, Y. A. W. (2008). The effect of similarities in skin texture and hand shape on perceived ownership of a fake limb. Body Image, 5(4), 389–394.PubMedCrossRefGoogle Scholar
  31. Happé, F. G. E. (1996). Studying weak central coherence at low levels: Children with autism do not succumb to visual illusions. A research note. Journal of Child Psychology and Psychiatry, 37(7), 873–877. doi: 10.1111/j.1469-7610.1996.tb01483.x.PubMedCrossRefGoogle Scholar
  32. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. doi: 10.1007/s10803-005-0039-0.PubMedCrossRefGoogle Scholar
  33. Haswell, C. C., Izawa, J., Dowell, L. R., Mostofsky, S. H., & Shadmehr, R. (2009). Representation of internal models of action in the autistic brain. Nature Neuroscience, 12(8), 970–972. doi: 10.1038/nn.2356.Google Scholar
  34. Hohwy, J., & Paton, B. (2010). Explaining away the body: Experiences of supernaturally caused touch and touch on non-hand objects within the rubber hand illusion. PloS One, 5(2), e9416.
  35. Hoy, J. A., Hatton, C., & Hare, D. (2004). Weak central coherence: A cross-domain phenomenon specific to autism? Autism, 8(3), 267–281. doi: 10.1177/1362361304045218.PubMedCrossRefGoogle Scholar
  36. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942–951. doi: 10.1038/nrn2024.PubMedCrossRefGoogle Scholar
  37. Iarocci, G., & McDonald, J. (2006). Sensory integration and the perceptual experience of persons with autism. Journal of Autism and Developmental Disorders, 36(1), 77–90. doi: 10.1007/s10803-005-0044-3.PubMedCrossRefGoogle Scholar
  38. Ionta, S., Heydrich, L., Lenggenhager, B., Mouthon, M., Fornari, E., Chapuis, D., et al. (2011). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron, 70(2), 363–374.PubMedCrossRefGoogle Scholar
  39. Jeannerod, M. (1986). Mechanisms of visuomotor coordination: A study in normal and brain-damaged subjects. Neuropsychologia, 24, 41–78.PubMedCrossRefGoogle Scholar
  40. Kaiser, M. D., & Pelphrey, K. A. (2012). Disrupted action perception in autism: Behavioral evidence, neuroendophenotypes, and diagnostic utility. Developmental Cognitive Neuroscience, 2(1), 25–35. doi: 10.1016/j.dcn.2011.05.005.
  41. Kammers, M. P. M., de Vignemont, F., Verhagen, L., & Dijkerman, H. C. (2009a). The rubber hand illusion in action. Neuropsychologia, 47(1), 204–211.PubMedCrossRefGoogle Scholar
  42. Kammers, M., Kootker, J., Hogendoorn, H., & Dijkerman, H. (2010). How many motoric body representations can we grasp? Experimental Brain Research, 202(1), 203–212. doi: 10.1007/s00221-009-2124-7.CrossRefGoogle Scholar
  43. Kammers, M. P. M., Longo, M. R., Tsakiris, M., Dijkerman, H. C., & Haggard, P. (2009b). Specificity and coherence of body representations. Perception, 38(12), 1804–1820.PubMedCrossRefGoogle Scholar
  44. Kammers, M. P. M., Rose, K., & Haggard, P. (2011). Feeling numb: Temperature, but not thermal pain, modulates feeling of body ownership. Neuropsychologia, 49(5), 1316–1321. doi: 10.1016/j.neuropsychologia.2011.02.039.PubMedCrossRefGoogle Scholar
  45. Kammers, M. P. M., Verhagen, L., Dijkerman, H. C., Hogendoorn, H., De Vignemont, F., & Schutter, D. J. L. G. (2009c). Is this hand for real? Attenuation of the rubber hand illusion by transcranial magnetic stimulation over the inferior parietal lobule. Journal of Cognitive Neuroscience, 21(7), 1311–1320. doi: 10.1162/jocn.2009.21095.PubMedCrossRefGoogle Scholar
  46. Kording, K., & Wolpert, D. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244.PubMedCrossRefGoogle Scholar
  47. Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L., & Wallace, M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129.PubMedCrossRefGoogle Scholar
  48. Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O. (2007). Video ergo sum: Manipulating bodily self-consciousness. Science, 317(5841), 1096.PubMedCrossRefGoogle Scholar
  49. Longo, M. R., Schüür, F., Kammers, M. P. M., Tsakiris, M., & Haggard, P. (2008). What is embodiment? A psychometric approach. Cognition, 107(3), 978–998.PubMedCrossRefGoogle Scholar
  50. Makin, T. R., Holmes, N. P., & Ehrsson, H. H. (2008). On the other hand: Dummy hands and peripersonal space. Behavioural Brain Research, 191(1), 1–10.PubMedCrossRefGoogle Scholar
  51. Mari, M., Castiello, U., Marks, D., Marraffa, C., & Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1430), 393–403.PubMedCrossRefGoogle Scholar
  52. Masterton, B. A., & Biederman, G. B. (1983). Proprioceptive versus visual control in autistic children. Journal of Autism and Developmental Disorders, 13(2), 141–152. doi: 10.1007/bf01531815.PubMedCrossRefGoogle Scholar
  53. Moseley, G. L., Gallace, A., & Spence, C. (2012). Bodily illusions in health and disease: Physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neuroscience & Biobehavioral Reviews, 36(1), 34–46. doi: 10.1016/j.neubiorev.2011.03.013.
  54. Moseley, G. L., Olthof, N., Venema, A., Don, S., Wijers, M., Gallace, A., et al. (2008). Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proceedings of the National Academy of Sciences, 105(35), 13169–13173. doi: 10.1073/pnas.0803768105.CrossRefGoogle Scholar
  55. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43.PubMedCrossRefGoogle Scholar
  56. Mussap, A. J., & Salton, N. (2006). A ‘rubber-hand’ illusion reveals a relationship between perceptual body image and unhealthy body change. Journal of Health Psychology, 11(4), 627–639. doi: 10.1177/1359105306065022.PubMedCrossRefGoogle Scholar
  57. Nayate, A., Bradshaw, J. L., & Rinehart, N. J. (2005). Autism and Asperger’s disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Research Bulletin, 67(4), 327–334. doi: 10.1016/j.brainresbull.2005.07.011.PubMedCrossRefGoogle Scholar
  58. Nazarali, N., Glazebrook, C., & Elliott, D. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders, 39(10), 1401–1411. doi: 10.1007/s10803-009-0756-x.PubMedCrossRefGoogle Scholar
  59. Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190–198. doi: 10.1016/j.cogbrainres.2005.01.014.PubMedCrossRefGoogle Scholar
  60. Peled, A., Pressman, A., Geva, A. B., & Modai, I. (2003). Somatosensory evoked potentials during a rubber-hand illusion in schizophrenia. Schizophrenia Research, 64(2–3), 157–163. doi: 10.1016/S0920-9964(03)00057-4.PubMedCrossRefGoogle Scholar
  61. Peled, A., Ritsner, M., Hirschmann, S., Geva, A. B., & Modai, I. (2000). Touch feel illusion in schizophrenic patients. Biological Psychiatry, 48(11), 1105–1108.PubMedCrossRefGoogle Scholar
  62. Petkova, V. I., & Ehrsson, H. H. (2008). If I were you: Perceptual illusion of body swapping. PLoS ONE, 3(12), e3832.PubMedCrossRefGoogle Scholar
  63. Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences, 95(3), 869–875.CrossRefGoogle Scholar
  64. Rinehart, N., Bradshaw, J., Brereton, A., & Tonge, B. (2001). Movement preparation in high-functioning autism and Asperger disorder: A serial choice reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders, 31(1), 79–88. doi: 10.1023/a:1005617831035.PubMedCrossRefGoogle Scholar
  65. Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., Iansek, R., Enticott, P. G., & Johnson, K. A. (2006). Movement-related potentials in high-functioning autism and Asperger’s disorder. Developmental Medicine and Child Neurology, 48(4), 272–277. doi: 10.1017/s0012162206000594.PubMedCrossRefGoogle Scholar
  66. Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63(2), 164–172. doi: 10.1016/j.ijpsycho.2006.03.012.PubMedCrossRefGoogle Scholar
  67. Rogers, S. J., Cook, I., & Meryl, A. (2005). Imitation and play in autism. In F. R. Volkmar, R. Paul, A. Klin, & D. Cohen (Eds.), Handbook of autism and pervasive developmental disorders (3rd ed., pp. 382–405). Hoboken, NJ: Wiley.Google Scholar
  68. Rogers, S. J., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, 46(12), 1255–1268. doi: 10.1111/j.1469-7610.2005.01431.x.PubMedCrossRefGoogle Scholar
  69. Rohde, M., Di Luca, M., & Ernst, M. O. (2011). The rubber hand illusion: Feeling of ownership and proprioceptive drift do not go hand in hand. PloS One, 6(6), e21659.PubMedCrossRefGoogle Scholar
  70. Ropar, D., & Mitchell, P. (1999). Are individuals with autism and Asperger’s syndrome susceptible to visual illusions? Journal of Child Psychology and Psychiatry, 40(8), 1283–1293. doi: 10.1111/1469-7610.00544.PubMedCrossRefGoogle Scholar
  71. Ropar, D., & Mitchell, P. (2001). Susceptibility to illusions and performance on visuospatial tasks in individuals with autism. Journal of Child Psychology and Psychiatry, 42(4), 539–549. doi: 10.1111/1469-7610.00748.PubMedCrossRefGoogle Scholar
  72. Ropar, D., & Mitchell, P. (2002). Shape constancy in autism: The role of prior knowledge and perspective cues. Journal of Child Psychology and Psychiatry, 43(5), 647–653. doi: 10.1111/1469-7610.00053.PubMedCrossRefGoogle Scholar
  73. Rossetti, Y., Desmurget, M., & Prablanc, C. (1995). Vectorial coding of movement: Vision, proprioception, or both? Journal of Neurophysiology, 74(1), 457–463.PubMedGoogle Scholar
  74. Schwabe, L., & Blanke, O. (2008). The vestibular component in out-of-body experiences: a computational approach. Frontiers in Human Neuroscience, 2(Article 17), 1–10.Google Scholar
  75. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739. doi: 10.1016/j.visres.2009.08.005.PubMedCrossRefGoogle Scholar
  76. Smith, E. G., & Bennetto, L. (2007). Audiovisual speech integration and lipreading in autism. Journal of Child Psychology and Psychiatry, 48(8), 813–821. doi: 10.1111/j.1469-7610.2007.01766.x.PubMedCrossRefGoogle Scholar
  77. Sober, S. J., & Sabes, P. N. (2003). Multisensory integration during motor planning. The Journal of Neuroscience, 23(18), 6982–6992.PubMedGoogle Scholar
  78. Sober, S. J., & Sabes, P. N. (2005). Flexible strategies for sensory integration during motor planning. Nature Neuroscience, 8, 490–497.PubMedGoogle Scholar
  79. Théoret, H., Halligan, E., Kobayashi, M., Fregni, F., Tager-Flusberg, H., & Pascual-Leone, A. (2005). Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Current Biology, 15(3), R84–R85.PubMedCrossRefGoogle Scholar
  80. Tsakiris, M. (2010). My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia, 48(3), 703–712. doi: 10.1016/j.neuropsychologia.2009.09.034.PubMedCrossRefGoogle Scholar
  81. Tsakiris, M., Carpenter, L., James, D., & Fotopoulou, A. (2010). Hands only illusion: multisensory integration elicits sense of ownership for body parts but not for non-corporeal objects. Experimental Brain Research, 204(3), 343–352. doi: 10.1007/s00221-009-2039-3.CrossRefGoogle Scholar
  82. Tsakiris, M., & Haggard, P. (2005). The rubber hand illusion revisited: Visuotactile integration and self-attribution. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 80–91.PubMedCrossRefGoogle Scholar
  83. van Beers, R. J., Sittig, A. C., & van der Gon, J. J. D. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355–1364.PubMedGoogle Scholar
  84. van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12(10), 834–837. doi: 10.1016/S0960-9822(02)00836-9.PubMedCrossRefGoogle Scholar
  85. Walter, E., Dassonville, P., & Bochsler, T. (2009). A specific autistic trait that modulates visuospatial illusion susceptibility. Journal of Autism and Developmental Disorders, 39(2), 339–349. doi: 10.1007/s10803-008-0630-2.PubMedCrossRefGoogle Scholar
  86. Wann, J. P., & Ibrahim, S. F. (1992). Does limb proprioception drift? Experimental Brain Research, 91(1), 162–166. doi: 10.1007/bf00230024.CrossRefGoogle Scholar
  87. Williams, J. H. G., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287–295. doi: 10.1016/S0149-7634(01)00014-8.PubMedCrossRefGoogle Scholar
  88. Zopf, R., Truong, S., Finkbeiner, M., Friedman, J., & Williams, M. A. (2011). Viewing and feeling touch modulates hand position for reaching. Neuropsychologia, 49(5), 1287–1293. doi: 10.1016/j.neuropsychologia.2011.02.012.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Philosophy DepartmentMonash UniversityMelbourneAustralia
  2. 2.Monash Alfred Psychiatry Research Centre, School of Psychology and PsychiatryMonash UniversityMelbourneAustralia
  3. 3.School of Psychology and PsychiatryMonash UniversityMelbourneAustralia

Personalised recommendations