Journal of Autism and Developmental Disorders

, Volume 42, Issue 7, pp 1403–1410

The Expression of Caspases is Enhanced in Peripheral Blood Mononuclear Cells of Autism Spectrum Disorder Patients

  • Dario Siniscalco
  • Anna Sapone
  • Catia Giordano
  • Alessandra Cirillo
  • Vito de Novellis
  • Laura de Magistris
  • Francesco Rossi
  • Alessio Fasano
  • Sabatino Maione
  • Nicola Antonucci
Original Paper

Abstract

Autism and autism spectrum disorders (ASDs) are heterogeneous complex neuro-developmental disorders characterized by dysfunctions in social interaction and communication skills. Their pathogenesis has been linked to interactions between genes and environmental factors. Consistent with the evidence of certain similarities between immune cells and neurons, autistic children also show an altered immune response of peripheral blood mononuclear cells (PBMCs). In this study, we investigated the activation of caspases, cysteinyl aspartate-specific proteases involved in apoptosis and several other cell functions in PBMCs from 15 ASD children compared to age-matched normal healthy developing controls. The mRNA levels for caspase-1, -2, -4, -5 were significantly increased in ASD children as compared to healthy subjects. Protein levels of Caspase-3, -7, -12 were also increased in ASD patients. Our data are suggestive of a possible role of the capsase pathway in ASD clinical outcome and of the use of caspase as potential diagnostic and/or therapeutic tools in ASD management.

Keywords

Autism spectrum disorders Caspases Gene expression PBMCs 

References

  1. Adam-Klages, S., Adam, D., Janssen, O., & Kabelitz, D. (2005). Death receptors and caspases: Role in lymphocyte proliferation, cell death, and autoimmunity. Immunologic Research, 33(2), 149–166.PubMedCrossRefGoogle Scholar
  2. Agard, N. J., Maltby, D., & Wells, J. A. (2010). Inflammatory stimuli regulate caspase substrate profiles. Molecular Cell Proteomics, 9(5), 880–893.CrossRefGoogle Scholar
  3. Aitken, S. L., Corl, C. M., & Sordillo, L. M. (2011). Pro-inflammatory and pro-apoptotic responses of TNF-α stimulated bovine mammary endothelial cells. Veterinary Immunology and Immunopathology, 140(3–4), 282–290.PubMedCrossRefGoogle Scholar
  4. Algeciras-Schimnich, A., Barnhart, B. C., & Peter, M. E. (2002). Apoptosis independent functions of killer caspases. Current Opinion in Cell Biology, 14, 721–726.PubMedCrossRefGoogle Scholar
  5. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders, text revision, 4th ed. Washington, DC: American Psychiatric Press.Google Scholar
  6. Andrianjafiniony, T., Dupré-Aucouturier, S., Letexier, D., Couchoux, H., & Desplanches, D. (2010). Oxidative stress, apoptosis, and proteolysis in skeletal muscle repair after unloading. American Journal of Physiology-Cell Physiology, 299, C307–C315.PubMedCrossRefGoogle Scholar
  7. Ashwood, P., Wills, S., & Van de Water, J. (2006). The immune response in autism: A new frontier for autism research. Journal of Leukocyte Biology, 80(1), 1–15.PubMedCrossRefGoogle Scholar
  8. Banerjee, M., Datta, M., Majumder, P., Mukhopadhyay, D., & Bhattacharyya, N. P. (2010). Transcription regulation of caspase-1 by R393 of HIPPI and its molecular partner HIP-1. Nucleic Acids Research, 38(3), 878–892.PubMedCrossRefGoogle Scholar
  9. Bauernfeind, F., Ablasser, A., Bartok, E., Kim, S., Schmid-Burgk, J., Cavlar, T., et al. (2011). Inflammasomes: Current understanding and open questions. Cellular and Molecular Life Sciences, 68(5), 765–783.PubMedCrossRefGoogle Scholar
  10. Bergmann, A., & Steller, H. (2010). Apoptosis, stem cells, and tissue regeneration. Science Signal, 3(145), re8.CrossRefGoogle Scholar
  11. Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefGoogle Scholar
  12. Bradstreet, J. J., Smith, S., Baral, M., & Rossignol, D. A. (2010). Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Alternative Medicine Review, 15(1), 15–32.PubMedGoogle Scholar
  13. Buttarelli, F. R., Circella, A., Pellicano, C., & Pontieri, F. E. (2006). Dopamine transporter immunoreactivity in peripheral blood mononuclear cells in amyotrophic lateral sclerosis. European Journal of Neurology, 13(4), 416–418.PubMedCrossRefGoogle Scholar
  14. Croonenberghs, J., Bosmans, E., Deboutte, D., Kenis, G., & Maes, M. (2002). Activation of the inflammatory response system in autism. Neuropsychobiology, 45, 1–6.PubMedCrossRefGoogle Scholar
  15. Dai, C., & Krantz, S. B. (1999). Interferon gamma induces upregulation and activation of caspases 1, 3, and 8 to produce apoptosis in human erythroid progenitor cells. Blood, 93(10), 3309–3316.PubMedGoogle Scholar
  16. Denney, D. R., Frei, B. W., & Gaffney, G. R. (1996). Lymphocyte subsets and interleukin-2 receptors in autistic children. Journal of Autism and Developmental Disorders, 26, 87–97.PubMedCrossRefGoogle Scholar
  17. Dickel, H., Gambichler, T., Kamphowe, J., Altmeyer, P., & Skrygan, M. (2010). Standardized tape stripping prior to patch testing induces upregulation of Hsp90, Hsp70, IL-33, TNF-α and IL-8/CXCL8 mRNA: New insights into the involvement of ‘alarmins’. Contact Dermatitis, 63(4), 215–222.PubMedCrossRefGoogle Scholar
  18. Enstrom, A. M., Onore, C. E., Van de Water, J. A., & Ashwood, P. (2010). Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain, Behavior, and Immunity, 24(1), 64–71.PubMedCrossRefGoogle Scholar
  19. Fang, H. Y., Lin, C. Y., Chow, K. C., Huang, H. C., & Ko, W. J. (2010). Microarray detection of gene overexpression in primary spontaneous pneumothorax. Experimental Lung Research, 36, 323–330.PubMedCrossRefGoogle Scholar
  20. Fujita, E., Dai, H., Tanabe, Y., Zhiling, Y., Yamagata, T., Miyakawa, T., et al. (2010). Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Disorder, 1(6), e47.CrossRefGoogle Scholar
  21. Giordano, C., Siniscalco, D., Melisi, D., Luongo, L., Curcio, A., Soukupova, M., et al. (2011). The galactosylation of N(ω)-nitro-l-arginine enhances its anti-nocifensive or anti-allodynic effects by targeting glia in healthy and neuropathic mice. European Journal of Pharmacology, 656(1–3), 52–62.PubMedCrossRefGoogle Scholar
  22. Gregg, J. P., Lit, L., Baron, C. A., Hertz-Picciotto, I., Walker, W., Davis, R. A., et al. (2008). Gene expression changes in children with autism. Genomics, 91(1), 22–29.PubMedCrossRefGoogle Scholar
  23. Gupta, S., Samra, D., & Agrawal, S. (2010). Adaptive and innate immune responses in Autism: Rationale for therapeutic use of intravenous immunoglobulin. Journal of Clinical Immunology, 30, S90–S96.CrossRefGoogle Scholar
  24. Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with Autism. Archives of General Psychiatry (in press).Google Scholar
  25. Heikaus, S., Pejin, I., Gabbert, H. E., Ramp, U., & Mahotka, C. (2010). PIDDosome expression and the role of caspase-2 activation for chemotherapy-induced apoptosis in RCCs. Cell Oncol, 32(1–2), 29–42.PubMedGoogle Scholar
  26. Jyonouchi, H., Sun, S., & Le, H. (2001). Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. Journal of Neuroimmunology, 120(1–2), 170–179.PubMedCrossRefGoogle Scholar
  27. Lakshmanan, U., & Porter, A. G. (2007). Caspase-4 interacts with TNF receptor-associated factor 6 and mediates lipopolysaccharide-induced NF-kappaB-dependent production of IL-8 and CC chemokine ligand 4 (macrophage-inflammatory protein-1). Journal of Immunology, 179(12), 8480–8490.Google Scholar
  28. Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T., & Vandenabeele, P. (2007). Caspases in cell survival, proliferation and differentiation. Cell Death Differentiation, 14, 44–55.Google Scholar
  29. Lamkanfi, M., Kanneganti, T. D., Van Damme, P., Vanden Berghe, T., Vanoverberghe, I., Vandekerckhove, J., et al. (2008). Targeted peptide-centric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Molecular Cell Proteomics, 7(12), 2350–2363.CrossRefGoogle Scholar
  30. Launay, S., Hermine, O., Fontenay, M., Kroemer, G., Solary, E., & Garrido, C. (2005). Vital functions for lethal caspases. Oncogene, 24(33), 5137–5148.PubMedCrossRefGoogle Scholar
  31. Levy, S. E., Mandell, D. S., & Schultz, R. T. (2009). Autism. Lancet, 374(9701), 1627–1638.PubMedCrossRefGoogle Scholar
  32. Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207(1–2), 111–116.PubMedCrossRefGoogle Scholar
  33. Li, F., He, Z., Shen, J., Huang, Q., Li, W., Liu, X., et al. (2010). Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell & Stem Cell Engineering, 7(4), 508–520.CrossRefGoogle Scholar
  34. Lisi, S., Sisto, M., Lofrumento, D., Frassanito, M. A., Caprio, S., Romano, M. L., et al. (2010). Regulation of mRNA caspase-8 levels by anti-nuclear autoantibodies. International Journal of Clinical & Experimental Medicine, 10, 199–203.CrossRefGoogle Scholar
  35. MacKenzie, S. H., Schipper, J. L., & Clark, A. C. (2010). The potential for caspases in drug discovery. Current Opinion in Drug Discovery & Development, 13(5), 568–576.Google Scholar
  36. Martinez, J. A., Zhang, Z., Svetlov, S. I., Hayes, R. L., Wang, K. K., & Larner, S. F. (2010). Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis, 15(12), 1480–1493.PubMedCrossRefGoogle Scholar
  37. Martinon, F., & Tschopp, J. (2007). Inflammatory caspases and inflammasomes: Master switches of inflammation. Cell Death and Differentiation, 14(1), 10–22.PubMedCrossRefGoogle Scholar
  38. McComb, S., Mulligan, R., & Sad, S. (2010). Caspase-3 is transiently activated without cell death during early antigen driven expansion of CD8(+) T cells in vivo. PLoS One, 5(12), e15328.PubMedCrossRefGoogle Scholar
  39. Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Schleifer, K., Dienger, K., Manning-Courtney, P., et al. (2006). Elevated cytokine levels in children with autism spectrum disorder. Journal of Neuroimmunology, 172(1–2), 198–205.PubMedCrossRefGoogle Scholar
  40. Momoi, T. (2004). Caspases involved in ER stress-mediated cell death. Journal of Chemical Neuroanatomy, 28(1–2), 101–105.PubMedCrossRefGoogle Scholar
  41. Murakami, Y., Aizu-Yokota, E., Sonoda, Y., Ohta, S., & Kasahara, T. (2007). Suppression of endoplasmic reticulum stress-induced caspase activation and cell death by the overexpression of Bcl-xL or Bcl-2. Journal of Biochemistry, 141(3), 401–410.PubMedCrossRefGoogle Scholar
  42. Nakatsumi, H., & Yonehara, S. (2010). Identification of functional regions defining different activity in caspase-3 and caspase-7 within cells. World Journal of Biological Chemistry, 285(33), 25418–25425.Google Scholar
  43. Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., et al. (2011). Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature, 471(7338), 363–367.PubMedCrossRefGoogle Scholar
  44. Onore, C., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Van de Water, J., et al. (2009). Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. Journal of Neuroimmunology, 216(1–2), 126–129.PubMedCrossRefGoogle Scholar
  45. Parihar, A., Eubank, T. D., & Doseff, A. I. (2010). Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. Journal of Innate Immunity, 2(3), 204–215.PubMedCrossRefGoogle Scholar
  46. Paulsen, M., Ussat, S., Jakob, M., Scherer, G., Lepenies, I., Schütze, S., et al. (2008). Interaction with XIAP prevents full caspase-3/-7 activation in proliferating human T lymphocytes. European Journal of Immunology, 38(7), 1979–1987.PubMedCrossRefGoogle Scholar
  47. Riedl, S. J., Fuentes-Prior, P., Renatus, M., Kairies, N., Krapp, S., Huber, R., et al. (2001). Structural basis for the activation of human procaspase-7. Proceedings of the National Academy of Sciences of the United States of America, 98, 14790–14795.PubMedCrossRefGoogle Scholar
  48. Ruiz-Vela, A., Opferman, J. T., Cheng, E. H., & Korsmeyer, S. J. (2005). Proapoptotic BAX and BAK control multiple initiator caspases. European Molecular Biology Organization Reports, 6(4), 379–385.PubMedGoogle Scholar
  49. Salskov-Iversen, M. L., Johansen, C., Kragballe, K., & Iversen, L. (2011). Caspase-5 expression is upregulated in lesional psoriatic skin. Journal of Investigative Dermatology, 131(3), 670–676.PubMedCrossRefGoogle Scholar
  50. Salvesen, G. S., & Riedl, S. J. (2008). Caspase mechanisms. Advances in Experimental Medicine and Biology, 615, 13–23.PubMedCrossRefGoogle Scholar
  51. Schopler, E., Reichler, R. J., & Renner, B. R. (1993). The childhood autism rating scale (CARS). Los Angeles: Western Psychological Services.Google Scholar
  52. Shi, M., Vivian, C. J., Lee, K. J., Ge, C., Morotomi-Yano, K., Manzl, C., et al. (2009). DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance. Cell, 136(3), 508–520.PubMedCrossRefGoogle Scholar
  53. Siniscalco, D., Fuccio, C., Giordano, C., Ferraraccio, F., Palazzo, E., Luongo, L., et al. (2007). Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacological Research, 55(2), 158–166.PubMedCrossRefGoogle Scholar
  54. Siniscalco, D., Giordano, C., Fuccio, C., Luongo, L., Ferraraccio, F., Rossi, F., et al. (2008). Involvement of subtype 1 metabotropic glutamate receptors in apoptosis and caspase-7 over-expression in spinal cord of neuropathic rats. Pharmacological Research, 57(3), 223–233.PubMedCrossRefGoogle Scholar
  55. Stamova, B. S., Apperson, M., Walker, W. L., Tian, Y., Xu, H., Adamczy, P., et al. (2009). Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. BMC Medical Genomics, 2, 49.PubMedCrossRefGoogle Scholar
  56. Stubbs, E. G., & Crawford, M. L. (1977). Depressed lymphocyte responsiveness in autistic children. Journal of Autism and Childhood Schizophrenia, 7, 49–55.PubMedCrossRefGoogle Scholar
  57. Toro, R., Konyukh, M., Delorme, R., Leblond, C., Chaste, P., Fauchereau, F., et al. (2010). Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends in Genetics, 26(8), 363–372.PubMedCrossRefGoogle Scholar
  58. van de Veerdonk, F. L., Netea, M. G., Dinarello, C. A., & Joosten, L. A. (2011). Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunology, 32(3), 110–116.CrossRefGoogle Scholar
  59. Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474(7351), 380–384.PubMedCrossRefGoogle Scholar
  60. Warren, R. P., Margaretten, N. C., Pace, N. C., & Foster, A. (1986). Immune abnormalities in patients with autism. Journal of Autism and Developmental Disorders, 16, 189–197.PubMedCrossRefGoogle Scholar
  61. Williams, K., Wheeler, D. M., Silove, N., & Hazell, P. (2010). Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). The Cochrane Database of Systematic Reviews, 8, CD004677.Google Scholar
  62. Yazdi, A. S., Guarda, G., D’Ombrain, M. C., & Drexler, S. K. (2010). Inflammatory caspases in innate immunity and inflammation. Journal of Innate Immunity, 2(3), 228–237.PubMedCrossRefGoogle Scholar
  63. Yi, C. H., & Yuan, J. (2009). The Jekyll and Hyde functions of caspases. Stem Cells and Development, 16(1), 21–34.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dario Siniscalco
    • 1
    • 2
  • Anna Sapone
    • 3
    • 4
  • Catia Giordano
    • 1
  • Alessandra Cirillo
    • 5
  • Vito de Novellis
    • 1
  • Laura de Magistris
    • 3
  • Francesco Rossi
    • 1
  • Alessio Fasano
    • 4
  • Sabatino Maione
    • 1
  • Nicola Antonucci
    • 6
  1. 1.Department of Experimental Medicine, Division of PharmacologySecond University of NaplesNaplesItaly
  2. 2.Centre for Autism—La Forza Del SilenzioNaples, CasertaItaly
  3. 3.Department of Internal and Experimental Medicine “Magrassi-Lanzara”Second University of NaplesNaplesItaly
  4. 4.Center for Celiac Research and Mucosal Biology Research CenterUniversity of Maryland School of MedicineBaltimoreUSA
  5. 5.Department of Experimental Medicine, Division of Biotechnology and Molecular Biology “A. Cascino”Second University of NaplesNaplesItaly
  6. 6.Biomedical Centre for Autism Research and TreatmentBariItaly

Personalised recommendations