Distinct Plasma Profile of Polar Neutral Amino Acids, Leucine, and Glutamate in Children with Autism Spectrum Disorders

  • Rabindra Tirouvanziam
  • Tetyana V. Obukhanych
  • Julie Laval
  • Pavel A. Aronov
  • Robin Libove
  • Arpita Goswami Banerjee
  • Karen J. Parker
  • Ruth O’Hara
  • Leonard A. Herzenberg
  • Leonore A. Herzenberg
  • Antonio Y. Hardan
Original paper

Abstract

The goal of this investigation was to examine plasma amino acid (AA) levels in children with Autism Spectrum Disorders (ASD, N = 27) and neuro-typically developing controls (N = 20). We observed reduced plasma levels of most polar neutral AA and leucine in children with ASD. This AA profile conferred significant post hoc power for discriminating children with ASD from healthy children. Furthermore, statistical correlations suggested the lack of a typical decrease of glutamate and aspartate with age, and a non-typical increase of isoleucine and lysine with age in the ASD group. Findings from this limited prospective study warrant further examination of plasma AA levels in larger cross-sectional and longitudinal cohorts to adequately assess for relationships with developmental and clinical features of ASD.

Keywords

Blood Predictive value Polar neutral amino acids Leucine Glutamate 

References

  1. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D., & Rubin, R. A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 11, 22.PubMedCrossRefGoogle Scholar
  2. Ahearn, W. H., Castine, T., Nault, K., & Green, G. (2001). An assessment of food acceptance in children with autism or pervasive developmental disorder-not otherwise specified. Journal of Autism and Developmental Disorders, 31, 505–511.PubMedCrossRefGoogle Scholar
  3. Aldred, S., Moore, K. M., Fitzgerald, M., & Waring, R. H. (2003). Plasma amino acid levels in children with autism and their families. Journal of Autism and Developmental Disorders, 33, 93–97.PubMedCrossRefGoogle Scholar
  4. Altamura, C., Maes, M., Dai, J., & Meltzer, H. Y. (1995). Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. European Neuropsychopharmacology, 5 (Suppl), 71–75.Google Scholar
  5. Arnold, G. L., Hyman, S. L., Mooney, R. A., & Kirby, R. S. (2003). Plasma amino acids profiles in children with autism: Potential risk of nutritional deficiencies. Journal of Autism and Developmental Disorders, 33, 449–454.PubMedCrossRefGoogle Scholar
  6. Badawy, A. A., Morgan, C. J., & Turner, J. A. (2008). Application of the Phenomenex EZ: Faasttrade mark amino acid analysis kit for rapid gas-chromatographic determination of concentrations of plasma tryptophan and its brain uptake competitors. Amino Acids, 34, 587–596.PubMedCrossRefGoogle Scholar
  7. Banks, R. E., Stanley, A. J., Cairns, D. A., Barrett, J. H., Clarke, P., Thompson, D., et al. (2005). Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clinical Chemistry, 51, 1637–1649.PubMedCrossRefGoogle Scholar
  8. Bellodi, L., Erzegovesi, S., Bianchi, L., Lucini, V., Conca, R., & Lucca, A. (1997). Plasma tryptophan levels and tryptophan/neutral amino acid ratios in obsessive-compulsive patients with and without depression. Psychiatry Research, 69, 9–15.PubMedCrossRefGoogle Scholar
  9. Blaylock, R. L., & Strunecka, A. (2009). Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Current Medicinal Chemistry, 16, 157–170.PubMedCrossRefGoogle Scholar
  10. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. JAMA, 290, 337–344.PubMedCrossRefGoogle Scholar
  11. Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J. A., Kennedy, D. P., et al. (2007). Mapping early brain development in autism. Neuron, 56, 399–413.PubMedCrossRefGoogle Scholar
  12. Fernell, E., Karagiannakis, A., Edman, G., Bjerkenstedt, L., Wiesel, F. A., & Venizelos, N. (2007). Aberrant amino acid transport in fibroblasts from children with autism. Neuroscience Letters, 418, 82–86.PubMedCrossRefGoogle Scholar
  13. Finegold, S. M., Dowd, S. E., Gontcharova, V., Liu, C., Henley, K. E., Wolcott, R. D., et al. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 16, 444–453.PubMedCrossRefGoogle Scholar
  14. Geschwind, D. H. (2009). Advances in autism. Annual Review of Medicine, 60, 367–380.PubMedCrossRefGoogle Scholar
  15. Hardan, A. Y., Minshew, N. J., Mallikarjuhn, M., & Keshavan, M. S. (2001). Brain volume in autism. Journal of Child Neurology, 16, 421–424.PubMedGoogle Scholar
  16. Hawkins, R. A., O’kane, R. L., Simpson, I. A., & Vina, J. R. (2006). Structure of the blood-brain barrier and its role in the transport of amino acids. Journal of Nutrition, 136, 218S–226S.PubMedGoogle Scholar
  17. Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Archives of General Psychiatry, 62, 1366–1376.PubMedCrossRefGoogle Scholar
  18. Hyde, R., Taylor, P. M., & Hundal, H. S. (2003). Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochemical Journal, 373, 1–18.PubMedCrossRefGoogle Scholar
  19. Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988.PubMedCrossRefGoogle Scholar
  20. Lepage, N., Mcdonald, N., Dallaire, L., & Lambert, M. (1997). Age-specific distribution of plasma amino acid concentrations in a healthy pediatric population. Clinical Chemistry, 43, 2397–2402.PubMedGoogle Scholar
  21. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185–212.PubMedCrossRefGoogle Scholar
  22. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.PubMedCrossRefGoogle Scholar
  23. Mohabbat, T., & Drew, B. (2008). Simultaneous determination of 33 amino acids and dipeptides in spent cell culture media by gas chromatography-flame ionization detection following liquid and solid phase extraction. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 862, 86–92.CrossRefGoogle Scholar
  24. Moreno-Fuenmayor, H., Borjas, L., Arrieta, A., Valera, V., & Socorro-Candanoza, L. (1996). Plasma excitatory amino acids in autism. Investigation Clinical, 37, 113–128.Google Scholar
  25. Ratajczak, H. V. (2011). Theoretical aspects of autism: Biomarkers–a review. Journal of Immunotoxicology, 8, 80–94.PubMedCrossRefGoogle Scholar
  26. Rolf, L. H., Haarmann, F. Y., Grotemeyer, K. H., & Kehrer, H. (1993). Serotonin and amino acid content in platelets of autistic children. Acta Psychiatrica Scandinavica, 87, 312–316.PubMedCrossRefGoogle Scholar
  27. Scholl-Burgi, S., Haberlandt, E., Heinz-Erian, P., Deisenhammer, F., Albrecht, U., Sigl, S. B., et al. (2008). Amino acid cerebrospinal fluid/plasma ratios in children: Influence of age, gender, and antiepileptic medication. Pediatrics, 121, e920–e926.PubMedCrossRefGoogle Scholar
  28. Schreck, K. A., Williams, K., & Smith, A. F. (2004). A comparison of eating behaviors between children with and without autism. Journal of Autism and Developmental Disorders, 34, 433–438.PubMedCrossRefGoogle Scholar
  29. Shinohe, A., Hashimoto, K., Nakamura, K., Tsujii, M., Iwata, Y., Tsuchiya, K. J., et al. (2006). Increased serum levels of glutamate in adult patients with autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 1472–1477.PubMedCrossRefGoogle Scholar
  30. Sumiyoshi, T., Anil, A. E., Jin, D., Jayathilake, K., Lee, M., & Meltzer, H. Y. (2004). Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: Relation to negative symptoms. The International Journal of Neuropsychopharmacology, 7, 1–8.PubMedCrossRefGoogle Scholar
  31. Tremolizzo, L., Difrancesco, J. C., Rodriguez-Menendez, V., Sirtori, E., Longoni, M., Cassetti, A., et al. (2006). Human platelets express the synaptic markers VGLUT1 and 2 and release glutamate following aggregation. Neuroscience Letters, 404, 262–265.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rabindra Tirouvanziam
    • 1
    • 2
    • 3
  • Tetyana V. Obukhanych
    • 4
  • Julie Laval
    • 2
    • 6
  • Pavel A. Aronov
    • 5
  • Robin Libove
    • 1
  • Arpita Goswami Banerjee
    • 1
    • 7
  • Karen J. Parker
    • 1
  • Ruth O’Hara
    • 1
  • Leonard A. Herzenberg
    • 4
  • Leonore A. Herzenberg
    • 4
  • Antonio Y. Hardan
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  2. 2.Department of PediatricsStanford University School of MedicineStanfordUSA
  3. 3.Beckman Center B013, Stanford University School of MedicineStanfordUSA
  4. 4.Department of GeneticsStanford University School of MedicineStanfordUSA
  5. 5.Vincent Coates Mass Spectrometry Laboratory, Stanford University School of MedicineStanfordUSA
  6. 6.IGMM-CNRSMontpellierFrance
  7. 7.Department of PsychiatryOxford Health - NHS Foundation TrustAmershamUK

Personalised recommendations